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Introduction 

 From September 2022 to September 2023, I did an apprenticeship as a member of the 

Innovation Desk team at the Scoring Center in the filial Risk of BPN Paribas Personal Finance located 

in Merignac. Through this year of apprenticeship, I wanted to increase my skills in Data Science, 

discover new techniques and learn more about the working environment of a big company.  

The office is in Merignac near the airport. It’s like a private campus with 2 buildings for employee’s 

offices, a big parking lot and a cafeteria. The working environment is very comfortable with new 

open spaces and soundproofing rooms for meetings. As a Bordeaux native, I was very happy to work 

in my hometown for a bit after spending most of my student life in Pau.  

The team I joined is composed of 5 data scientists (Wael, Julie, Kenza, Aurelien, Angelina) and 1 team 

manager (Edouard). Their main objective is to discover and introduce machine learning models for 

different missions related to the scoring center. 

The aim of this apprenticeship was, in a first time, to assist the data scientists of the team by doing a 

research work about categorical encoders. And then, having a more business-oriented mission by 

building a scorecard using logistic regression to identify “bad debt” individuals on credit cards for a 

filial in South Africa. 
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Chapter 1: Research about categorical variables encoding 

1. Introduction 

The data preprocessing has a very important influence when it comes to the Machine Learning 

results. Most of the models can’t handle categorical variables (like RandomForest models which are 

mainly used at the ScoringCenter), except if we change them into numerical values. The model 

performances will rely on how we will encode those data. Depending on the method used, the 

predictions can be highly impacted. And so, the precision might be increased or decreased.  

 

There are 2 types of categorical variables. Nominal’s ones, which don’t have any order notion (ex: 

“cow, dog, cat” or “France, Japan, USA, Brazil”). And the ordinal’s ones, which can be ordered (ex: 

“good, average, bad”). As presented in the example below: 

Animal Country Result 

cow Japan good 

cow France average 

cat Brazil good 

dog France bad 

 

To begin with, it’s important to do an overview of the different encoding techniques.  

The Kaggle kernel by Shahul E. allows to learn and try some of the most used encoding techniques 

(such as Label, OneHot, FeatureHashing and Target). For each encoding technique, it runs and tests 

in a simple logistic regression model.  

The article by Baijayanta R. is a state of art of all the current techniques (the author keeps it updated 

by adding new encoding methods). It presents each method and provides examples on how to do it. 

The research paper by John H. and Taghi K. investigates current techniques for representing 

qualitative data as input to neural networks. Even if the ScoringCenter doesn’t work with neural 

networks, the document explains how work different encoding methods (Label, Count, OneHot, 

LeaveOneOut and Hashing). 

The research paper by Shipra S. explains what’s Categorical Data Encoding, presents different 

encoding techniques (Label, OneHot, Dummy, Effect, Binary N, BaseN, Hash and Target) and when to 

use them. This research paper introduces the category_encoders python library. 

The Matt C. article, which is a step-by-step guide, presents us how to use the category_encoders 

python library in a real use case. And provides a “simple” benchmark of the different performances 

of each encoder on a classification model (XGBClassifier). 

The TowardsDataScience article by Denis V. is a benchmark of different categorical encoder 

techniques present in the category_encoders library, using single and double validation. The 

methodology used in this research’s inspired by his work. 

There is a lot of ways to encode categorical variables into numerical values to use them in our 

models. In this document, we will review different of this encoding techniques. We will study what 

are their Pros and Cons. And will see the results on real application cases. 

Our 3 keys objectives are:  

• Performance, we want to have an encoding technique that can provide better or 

even results than the current solution. 

 

Nominal variables 
Ordinal variable 
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• Dimension, the less columns our dataset obtains after encoding, the better it’s 

for tree-based models. As the dimensionality increases the number of possible 

combinations of parameters for machine learning algorithms to search through 

explodes exponentially. 

 

• Interpretability, we want to use an encoding method that’s simple to 

understand. And allow us to easily understand how our model works. Let’s take 

the example of feature importance. With this technique we can calculate a score 

for all the input features for a given model (the scores simply represent the 

“importance” of each feature). The encoding methods that increase the number 

of columns (like One Hot Encoding) will increase the number of features. And so, 

reduce the interpretability of the feature importance. 

To make it simple, the following techniques were selected based on the interpretability constraint. 

And if we can easily make them by our hands (in case the library is disable). 

2. Techniques 

Let’s make a state of art of the different encoding techniques used. For each encoder, we will 

look at how it works, the pros/cons and how it handles missing values. 

 

i. Increase data frame shape 

 

1. One Hot Encoding 

The One Hot Encoding is currently the most used method to encode categorical variables. The 

encoder creates several additional features based on the number of unique values in the categorical 

feature. 

For example, for the categorical variable “color” with unique values red, blue and green inside, the 

One Hot Encoder will create 3 new columns named “color_red”, “color_blue” and “color_green”. 

Those variables will take the value 1 depending on the observation color. Otherwise, it will be 0. 

  
Figure 1: One Hot Encoding 

Pros:  

• Simple to understand 

• Powerful for non-tree models 

 

Cons:  
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• Can add a lot of new columns (depending on if the encoded variable has a lot of 

categories) 

• Low readability on analysis feature graphs 

 

Handling missing value: 

 The One Hot Encoder from the library category_encoders will by default encode a new value 

as 0 in every dummy column. In the example below, Purple is a new value that didn’t exist during the 

encoder fitting. 

 

Figure 2: One Hot Encoding missing value 

Note:  

 For regression, it’s advised to use N-1 columns after encoding in order to exclude 

redundancy, with N the number of categories in our variable. To do this, we must drop the first 

column after One Hot Encoding. It allows us to avoid the “dummy variable” trap, a scenario in which 

two or more variables are highly correlated. In simple terms, one variable can be predicted from the 

others. 

 

2. Binary Encoding 

The Binary Encoding converts the categories from a variable into a binary code. If there is N 

categories in a column, the encoder will create log (base 2) N new columns. 

For example, let’s encode a variable with 6 different categories. By using the binary encoder, we will 

only have 3 new columns in our dataset. Meanwhile, with the One Hot Encoding, we would have 

created 6 new columns. Now, if we want to encode a variable with 120 categories, we will only 

create 7 new columns with Binary Encoding. Instead of 120 new columns with One Hot Encoding. 

Here’s an example: 

 

 

 

Figure 3: Binary vs OHE 
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Figure 4: Binary Encoding 

Pros: 

• Works well for variables with a high number of categories 

• Save storage 

• Reduce the dimensional troubles for high cardinality data 

Cons: 

• Don’t give any information with the new columns 
• Low readability on the feature graph analysis  

 
Handling missing value: 

The Binary Encoder from the library category_encoders will by default encode a new value as 

0 in every binary column. In the example below, Purple is a new value that didn’t exist during the 

encoder fitting. 

 

Figure 5: Binary Encoding missing value 

 

ii. Conserve the data frame shape 

1. Ordinal Encoding 

With Ordinal Encoding, each category will be transformed with an integer between 1 and N 

(N the number of different categories in our variable). If we have ordinal data, an optional mapping 

dictionary can be passed in argument. In this case, we use the knowledge that there is some true 

order to the classes themselves. For example, let’s say we want to encode a column “Temperature” 

with 4 different categories (Hot, Cold, Very Hot, Warm). We must give a logical order to this value to 

encode them correctly: Cold < Warm < Hot < Very Hot. Otherwise, the classes are assumed to have 

no true order, and integers are selected at random. 
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Figure 6: Ordinal Encoding 

Pros: 

• Easy to understand 

• Low storage 

Cons:  

• If the variable is ordinal, the user must do it by hand to give the order of the categories 

• Can create a notion of order that doesn’t exist between the categories if they are not 

ordinal. The rank may result in an undesired bias and separate possible interesting 

combinations 

Handling missing value: 

The Ordinal Encoder from the library category_encoders will by default encode a new value 

by -1. In the example below, Purple is a new value that didn’t exist during the encoder fitting. 

 

Figure 7: Ordinal Encoder missing value 

 

2. Count Coding 

Count encoding replaces each categorical value with the number of times it appears in the 

dataset.  

  

Figure 8: Count Encoding 

Pros: 

• Easy to understand 

• Useful for trees models 
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Cons: 

• If the train sample is different enough from the population, the model may overfit the 

training data because 

• Risk to lose information if 2 categories have the same count 

 

Handling missing value: 

The Count Encoder from the library category_encoders will by default encode a new value by 

0. In the example below, Purple is a new value that didn’t exist during the encoder fitting. 

 

Figure 9: Count Encoding missing value 

 

3. Target Encoding 

The Target Encoding uses the information coming from the target variable. This process will 

transform the values from the categorical variable by the probability to have 1 in the target variable 

for each category (as explained in Figure 10). 

As shown in the below graph, we can see we have 4 values Hot in the categorical variable 

“Temperature”. 4 Hot on 3 have target value of 1 (column “Target “). That’s why, the Hot values will 

be encoded by ¾ = 0.75 

 
Figure 10: Target Encoding, image by Baijayanta R. 

The category_encoders library includes a smoothing operation. This technique is particularly useful to 

handle situations when some of the categories are not well represented.  

The example from Max H. blog might help to explain the smoothing idea: “Imagine a new movie is 

posted on IMDB and it receives three ratings. Taking into account the three ratings give the movie an 

average of 9.5. This is surprising because most movies tend to hover around 7, and the very good 

ones rarely go above 8. The point is that the average can’t be trusted because there are too few 

values. The trick is to “smooth” the average by including the average rating over all movies. In other 
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words, if there aren’t many ratings we should rely on the global average rating, whereas if there 

enough ratings then we can safely rely on the local average.” 

Pros: 

• Simple and powerful 

 

Cons:  

• Target Leakage, encode with information of the target variable we are trying to predict 

• If the train sample is different enough from the population, the model may overfit the 

training data because mean values will be different 

• High risk when there is a drift on the encoded data when the target proportions change 

 

Handling missing value: 

The Target Encoder from the library category_encoders will by default encode a new value by 

the target mean (during the encoder fitting). In the example below, Purple is a new value that didn’t 

exist during the encoder fitting. 

 

Figure 11: Target Encoding missing value 

 

4. Weight Of Evidence Encoding 

The Weight Of Evidence Encoding measures the “strength” of a grouping technique to separate 

good and bad. It’s calculated with the following formula:  

𝑊𝑂𝐸𝑐𝑎𝑡 = ln(
%𝐺𝑂𝑂𝐷𝑐𝑎𝑡

%𝐵𝐴𝐷𝑐𝑎𝑡
) 

 

 

 

 

 

 

Pros: 

• Create a new subclass if 2 variables have the %Good and %Bad 

Figure 12: Weight of Evidence Encoding 
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Cons:  

• Target Leakage, encode with information of the target variable we are trying to predict 

• If the train sample is different enough from the population, the model may overfit the 

training data because mean values will be different 

• High risk when there is a drift on the encoded data when the target proportions change 

Handling missing value: 

The Weight of Evidence Encoder from the library category_encoders will by default encode a new 

value by 0.00. Meaning this new value is expected to have the same percentage of good and bad. In 

the example below, Purple is a new value that didn’t exist during the encoder fitting. 

 

 

 

 

 

3. Methodology 

Now we are going to see the methodology used to compare the encoders performances on a 

dataset.  

 

Firstly, we need to have prepared and cleaned our dataset. And make sure that the categorical 

columns we want to encode have the pandas type ‘category’. We will then split our dataset into a 

train (80%) and a test (20%) sample. Make sure your samples are stratified on the target variable 

when doing the train test split.  

 

Secondly, we are going to apply the encoderPerfTraining function on our train data. This function 

takes for arguments a list of declared encoding methods, the number of runs we want to perform, 

the training dataset and a sklearn binary classifier. We will then generate 5 stratified folds (split data 

into train/validation sets) from our train dataset. And for every fold, we will fit our encoders on the 

current train fold. Then, transform the train and validation data. Afterwards, we fit the classifier on 

the encoded train fold to predict the encoded validation fold. With the prediction, we can provide 

metrics (ROC_AUC, Accuracy, Recall, etc.) for each encoder on each fold. We repeat this operation 

until we reached the number of runs the user asked. 

 

Thirdly, after doing all the runs, we obtain a data frame with all the metrics for each run of each 

encoder (using the return by encoderPerfTraining). And so, we obtain a boxplot of each metric with 

the function encoderGraphPerf. We can now compare which encoder performed better for our 

classifier on our train dataset. 

 

Finally, we can select the best encoder on the train data based on the different performances. And 

apply it on the test dataset to see how it performs in a real situation. We can compare the new 

results to the past ones to see if the new encoding technique changed the performances. 

Figure 13: Weight of Evidence Encoding 
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The following schema (Figure 14) presents what is the main logic behind this program. 

 

  

Figure 14: Program schema 

“* nb_runs” is a variable given by the user. 

“* nb_folds” is by default set to 5 in the encoderPerfTraining function (n_folds=5). 

“* nb_encoders” depends on the number of encoders the user wants to test. 

The “Classifier” is decided and declared by the user. It must be a binary sklearn classifier (for 

example, a random forest). 

This program doesn’t give a final encoder choice to the user. But it allows him to have the different 

performances to make his own choice. 

 

4. Results 

Before looking at the results of this program, it is important to present the decision metrics used to 

evaluate the performances.  

i. Metrics presentation 

 

1. Confusion Matrix 

Confusion matrices represent counts from predicted and actual values. It can be represented as the 

following table for a binary classification problem:  
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2. Accuracy score 

The accuracy score is an evaluation metric that measures the number of correct predictions made by 

a model. It’s calculated by dividing the number of correct predictions by the total number of 

predictions. Although it’s a very easy to understand metric, it doesn’t work well on imbalanced 

datasets. The formula to calculate it is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

3. Precision score 

The precision score is the proportion of actual positives in all the positive predictions. The formula 

used to calculate it is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

4. Recall score  

The recall score is the proportion of actual positives predicted correctly. The formula used to 

calculate it is: 

𝑅𝑒𝑐𝑎𝑙𝑙𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

5. ROC AUC score 

It’s mandatory to define what are ROC (Receiver Operating Characteristic) curves to understand the 

ROC AUC score.  

A ROC curve is intended to show how well the model works for every possible threshold. By 

confronting the True Positive Rate (𝑇𝑃𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ) to the False Positive Rate 

(𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 ).  

On the following plots, the green line is when TPR = FPR. While the blue line represents the ROC 

curve of the classifier. If the ROC curve is exactly on the green line, it means that the classifier has the 

same predictive power as flipping a coin. 

 Predicted 

Negative (0) Positive (1) 

True 
Negative (0) True Negatives (TN) False Positive (FP) 

Positive (1) False Negative (FN) True Positive (TP) 
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Figure 14: ROC Curves, image by Vinícius T. 

As shown on the Figure 14, on the left plot the blue line is relatively close to the green one, which 

means that the classifier is bad. The middle one is a good enough classifier. The rightmost plot shows 

a good classifier, with the ROC curve closer to the axes and the “elbow” close to the coordinate (0, 1). 

To make it short, the bigger the area under the blue curve is, the better it is. 

The ROC AUC (Area Under the Curve) score is a metric that evaluates a ROC curve. It takes a value 

between 0.5 and 1. The score measures the area under the curve of the ROC curve. A score around 

0.5 means that the model is “bad”. And a score near 1 means that the model is “good”. 

 

ii. Fraud score FULL-CB backup model 

The FULL-CB product is an online payment facility in 3 or 4 times for French Ecommerce 

platforms. The purchase amounts variate between 90€ and 3000€. On this product, no supporting 

documents are requested from the client. He only needs to fill an online form. The process is a 100% 

dematerialized. For the backup model we only use granted data, the initial train dataset has around 

674 000 individuals for the train set, around 168 000 individuals for the test set and around 180 000 

for the out of time set. They have 280 columns each. The target variable is ‘MP_ECH2’, which 

indicates if the person made a fraud or not. 

In order to gain time in the Data exploration and Modelling steps, we will use the results obtained by 

Julie CAVARROC presented in her project. The encoding technique selected for the categorical 

variables is a One Hot Encoder. 

The idea is not to compete against Julie’s model by optimizing the process. Instead, we want to see if, 

with almost the same variables and the same random forest model, we can increase the 

performances by using a different encoder. 

For some confidential reason, the non-categorical features will not be named in this 

report. 

Using all columns. 

Before the features selection step, the initial project kept 54 variables (after a One Hot Encoding 

process). 

In order to use our encoders as expected, we will reverse the One Hot Encoding process. And keep 

the origin variables used before the One Hot Encoding. In the end, there are 42 variables created by 

the One Hot Encoder. After reversing the encoding, the 42 columns became 7 categorical variables. 
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We are using information about sociodemographic, financial situation, … 

Here is a sum up of the final columns: 

• 7 numerical  

 

• 5 binaries  

 

• 7 categorical (BANK_CLEAN with 9 values, LEVEL_CLEAN with 4 values, BRAND_CLEAN with 3 

values, TYPE_CLEAN with 3 values, ORDERDATE_MONTH with 12 values, DOMAINE_EMAIL 

with 5 values, SECTEUR_VENDEUR with 7 values) 

Here is an extract of the final train data frame before using it: 

 

Figure 15: FULL-CB Backup Train data extract after reversing One Hot Encoding 

The random forest used is the one selected on the source project. So, it’s optimized on One Hot 

Encoded data. The main hyperparameters used are 100 trees and a depth of 16. 

 

Finally, after processing the encoding techniques tester, here are the results after processing 15 runs 

at the cut-off 1%:  

The OneHotEncoder averages better results than the others. But scale wise, the difference in the 

results is very low. For example, there is only a bit more than 1% of difference between the best 

OneHotEncoder and the worse CountEncoder on the ROC AUC metric. Although the metrics results 

come from a RandomForest optimized for a OneHotEncoding preprocessing, the other encoding 

techniques have similar/close results. So, we can conclude that the other encoding techniques have 

similar results while having less columns added to the data frame then with OneHotEncoding. 

In OneHotEncoding, the data frame had 19 columns before encoding. And had 54 columns after 

encoding. While with BinaryEncoding, the data frame had 33 columns after encoding. Target, Count, 

Figure 16: FULL-CB Backup encoding methods metrics 
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Ordinal and WeightOfEvidence encoders don’t change the shape of the data frame after encoding. 

So, it kept its original shape with 19 columns. 

NOTE: Because Target et WeightOfEvidence encoders are both based on the target, the models have 

similar results. There is a convergence in the results when we run a lot of iterations using this 

method.  

 

The next step is to test for each encoder what are the selected columns after the features 

selection process (developed in the initial work). It will allow us to understand what columns are 

optimized for each encoding techniques. 

Feature selection for each encoder. 

The initial project has an internal function that select feature based on permutation feature 

importance. It also does a hyperparameters optimization for a random forest at the same time. 

We will use the 19 variables that were selected to do the feature selection in the initial project. 

Those variables have the following type: 

• 7 numerical  

 

• 5 binary  

 

• 7 categorical (BANK_CLEAN, LEVEL_CLEAN, BRAND_CLEAN, TYPE_CLEAN, 

ORDERDATE_MONTH, DOMAINE_EMAIL, SECTEUR_VENDEUR) 

 

Because One Hot and Binary encoders create new columns, the feature selection process is longer 

then with the other techniques: 

• Between 5 hours 30 minutes and 6 hours for One Hot and Binary 

• Between 2hours 40 minutes and 3 hours 40minutes for Ordinal, Count, Target and 

Weight Of Evidence 

We want to compare what features will be selected for each encoder on the same dataset. To do so, 

we are going to select the iteration that has a good performance (based on precision, recall and roc 

auc scores) and has reduced the number of columns (in order to reduce complexity).  

Here is an overview of the different performances for every encoding technique:  
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Figure 17: Features selection precision score results  

 

Figure 18: Features selection recall score results 

 

Figure 19: Features selection ROC AUC score results 
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The x-axis is the number of selected columns in the features selection. The y-axis is the performance 

of the metric in %. The numbers under each marker represent the iteration number realized in the 

process. 

An interesting thing to observe is that encoders who don’t increase the shape (Count, Target, 

Ordinal, WoE) of the data frame have better results for the same number of columns then the ones 

who increases the size (OHE, Binary). For example, on the precision (Figure 18) for 11 columns, there 

is around 2% of difference between the TargetEncoder and the OneHotEncoder in favor of the Target 

for the same number of selected columns. 

Let’s now see the best option for every encoder. To do so, we must select the iteration 

during the feature selection which doesn’t have too many columns and still has good performances 

on the different metrics. This step is very subjective and depends on the analyst preferences or 

obligations.  

Without looking at the performances, we can already see a difference just with the 

processing time of the used feature selection function: 

• OneHot and Binary: between 5 hours 30 minutes and 6 hours 

• Ordinal, Count, Target and WeightOfEvidence: between 2 hours 40 minutes and 

3 hours 40 minutes 

Here are the performances of the feature selection process for each encoding techniques:  

o BinaryEncoding 

Here are the results of the feature selection for the OneHotEncoding technique: 

Figure 20: OneHotEncoding features selection results 

From the previous graph, we can see that the iteration number 8 has good metrics and doesn’t have 

a lot of selected columns (only 11 instead of the 55 initial ones). Among the 11 final columns of this 

feature selection, the encoded categorical ones are: BANK_CLEAN_BANQUE_POSTALE, 

LEVEL_CLEAN_CLASSIC, DOMAINE_EMAIL_HOTMAIL, SECTEUR_VENDEUR_GPE_CONFORAMA, 

BANK_CLEAN_Others, BANK_CLEAN_BNP_PARIBAS. 
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o BinaryEncoding 

Here are the results of the feature selection for the BinaryEncoding technique:  

 

Figure 21: BinaryEncoding features selection results 

From the previous graph, we can see that the iteration number 6 has good metrics and 

doesn’t have a lot of selected columns (only 11 instead of the 33 initial ones).  

Among the 11 final columns of this feature selection, the encoded categorical ones are: 

BANK_CLEAN_0, BANK_CLEAN_3, LEVEL_CLEAN_1, DOMAINE_EMAIL_0, LEVEL_CLEAN_2, 

SECTEUR_VENDEUR_2.  

o OrdinalEncoding 

Here are the results of the feature selection for the OrdinalEncoding technique: 

 

Figure 22: OrdinalEncoding features selection results 

From the previous graph, we can see that the iteration number 4 has good metrics and 

doesn’t have a lot of selected columns (only 11 instead of the 19 initial ones).  
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Among the 11 final columns of this feature selection, the encoded categorical ones are: 

BANK_CLEAN, DOMAINE_EMAIL, LEVEL_CLEAN, SECTEUR_VENDEUR, TYPE_CLEAN, BRAND_CLEAN. 

o CountEncoding 

Here are the results of the feature selection for the CountEncoding technique:  

 
Figure 23: CountEncoding features selection results 

From the previous graph, we can see that the iteration number 4 has good metrics and 

doesn’t have a lot of selected columns (only 11 instead of the 19 initial ones).  

Among the 11 final columns of this feature selection, the encoded categorical ones are: 

BANK_CLEAN, DOMAINE_EMAIL, LEVEL_CLEAN, SECTEUR_VENDEUR, TYPE_CLEAN. 

o TargetEncoding 

Here are the results of the feature selection for the TargetEncoding technique: 

 

Figure 24: TargetEncoding features selection results 
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From the previous graph, we can see that the iteration number 4 has good metrics and 

doesn’t have a lot of selected columns (only 11 instead of the 19 initial ones).  

Among the 11 final columns of this feature selection, the encoded categorical ones are: 

DOMAINE_EMAIL, SECTEUR_VENDEUR, LEVEL_CLEAN, BRAND_CLEAN, TYPE_CLEAN. 

o WeightOfEvidence 

Here are the results of the feature selection for the WeightOfEvidence technique:  

 

Figure 25: WeightOfEvidence features selection results 

From the previous graph, we can see that the iteration number 4 has good metrics and 

doesn’t have a lot of selected columns (only 11 instead of the 19 initial ones).  

Among the 11 final columns of this feature selection, the encoded categorical ones are: 

DOMAINE_EMAIL, SECTEUR_VENDEUR, LEVEL_CLEAN, BRAND_CLEAN, TYPE_CLEAN 

Now, let’s compare the performances on the test dataset. For a given encoder, we will use 

the 11 columns selected in the Feature Selection process. And run a random search with cross 

validation in order to find the “best set” of hyperparameters for a random forest. Once we have this 

set of hyperparameters, we can train and test the Random Forest on the encoded data.  

The following schema resumes the process steps for 1 encoder:  
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Figure 26: Steps schema 

 

After processing this program, we obtained the following table on the test data with a cut-off set at 

1%: 

Encoder Precision 1% Recall 1% ROC AUC 

One Hot Encoder 0,235 0,104 0,702 

Binary Encoder 0,252 0,111 0,707 

Ordinal Encoder 0,284 0,126 0,734 

Count Encoder 0,282 0,125 0,734 

Target Encoder 0,287 0,127 0,741 

Weight Of Evidence 0,278 0,123 0,739 

 

On the above table, the Target Encoder is the best technique. It outperforms the One Hot Encoder by 

5.2% on the precision. 

We obtained the following table on the out of time data with a cut-off set at 1%: 

Encoder Precision 1% Recall 1% ROC AUC 

One Hot Encoder 0,233 0,115 0,696 

Binary Encoder 0,229 0,101 0,699 

Ordinal Encoder 0,265 0,124 0,724 

Count Encoder 0,267 0,132 0,728 
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Target Encoder 0,258 0,132 0,731 

Weight Of Evidence 0,26 0,132 0,731 

 

On the above table, the Count Encoder is the best technique. It outperforms the One Hot Encoder by 

3.4% on the precision. 

Also, it can be interesting to study the difference between the feature importance of their 

RandomForest. To do so, we will compare the OneHotEncoder and the Target: 

 Figure 27: One Hot Encoder Feature importance 

In the Feature importance using the One Hot Encoder, 6 features come from 4 encoded categorical 

variables: 

• BANK_CLEAN → BANK_CLEAN_BANQUE_POSTALE, BANK_CLEAN_Others, 

BANK_CLEAN_BNP_PARIBAS 

• LEVEL_CLEAN → LEVEL_CLEAN_CLASSIC 

• DOMAINE_EMAIL → DOMAINE_EMAIL_HOTMAIL 

• SECTEUR_VENDEUR → SECTEUR_VENDEUR_GPE_CONFORAMA 
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 Figure 28: Target Encoder Feature importance 

In the Feature importance using the Target Encoder, 6 features come from 6 encoded categorical 

variables. But compared to the One Hot Encoder, we keep all the information in the variables: 

• BANK_CLEAN (all 9 values) 

• LEVEL_CLEAN (all 4 values) 

• DOMAINE_EMAIL (all 5 values) 

• SECTEUR_VENDEUR (all 7 values) 

• BRAND_CLEAN (all 3 values) 

• TYPE_CLEAN (all 3 values) 

In term of interpretability in the feature importance, the Target Encoder seems more “logical” 

because we conserve all the information of each categorical variable. Plus, it allows us to see the 

“real” importance of a feature in the Machine Learning model (and not just the importance of 1 

feature). For example, if we sum the importance of the 3 BANK_CLEAN variables in the One Hot 

Encoder Feature importance, we obtain 0.01 + 0.012 + 0.021 = 0.043. It’s half of the feature 

importance of BANK_CLEAN in the Target Encoder (0.089). 

We can conclude that the Target Encoder is a better technique in this scenario because of its positive 

impact in the dimension, interpretability and increase in the performances. It would have increased 

the performances of a “traditional model” (using the One Hot Encoding technique). 

iii. DomoFinance project 

The DomoFinance train data frame has 106 625 lines and 7 columns. The variables have the following 

type: 

• 4 numerical (LOAN_DURATION, APPLICANT_AGE, APPLICANT_SALARY, 

RATIO_REQUEST_AMOUNT_BY_APPLICANT_SALARY) 

 

• 3 categorical (PRODUCT_TYPE, MARITAL_STATUS, CSP_STATUS) 

The target variable is “BAD_PAYER” which indicates if the individual has committed a fraud or not.  
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When running the encoding techniques tester with the default RandomForest provided by scikit-

learn, we obtain the following results (the threshold is set at 1%): 

 

Figure 29: DomoFinance encoding methods metrics 

We can see that with this RandomForest, the Target and Weight of Evidence encoders have better 

metrics performances then others. 

Now we want to see how these encoders perform compare to others when using the “best” 

RandomForest for their cases. To do so, we will use a random search (combined with cross 

validation) function in order to determine what are the best hyperparameters set for a 

RandomForest using the Weight of Evidence or Target encoding. 

 

o Weight of Evidence best set of hyperparameters: 

 

Figure 30: DomoFinance WOE “best” RandomForest hyperparameters 

Using the above parameters, we obtained the following results during the cross-validation on the 

train set: 
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Figure 31: DomoFinance metrics with WOE “best” RandomForest hyperparameters  

 

As we can see, WoE and Target encoders performed the best on the train dataset for all the 3 

metrics.  

On the test dataset we obtained the following results: 

Encoder Precision 1% Recall 1% ROC AUC 

Binary Encoder 0.072 0.065 0.724 

Target Encoder 0.094 0.082 0.730 

One Hot Encoder 0.070 0.061 0.731 

Count Encoder 0.075 0.066 0.724 

Ordinal Encoder 0.056 0.049 0.726 

WOE Encoder 0.075 0.065 0.734 
Figure 32: DomoFinance metrics with WOE “best” RandomForest hyperparameters prediction on the test dataset 

 

o Target best set of hyperparameters: 

 

Figure 33: DomoFinance Target “best” RandomForest hyperparameters 

Using the above parameters, we obtained the following results during the cross-validation on the 

train set: 
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Figure 34: DomoFinance metrics with Target “best” RandomForest hyperparameters  

As we can see, WoE and Target encoders perform the best on this train dataset for all the 3 metrics. 

On the test dataset we obtained the following results: 

Encoder Precision 1% Recall 1% ROC AUC 

Binary Encoder 0.084 0.074 0.741 

Target Encoder 0.089 0.078 0.740 

One Hot Encoder 0.103 0.090 0.733 

Count Encoder 0.094 0.082 0.732 

Ordinal Encoder 0.061 0.053 0.749 

WOE Encoder 0.075 0.066 0.729 
Figure 35: DomoFinance metrics with Target “best” RandomForest hyperparameters prediction on the test dataset 

 

o Binary best set of hyperparameters: 

 

Figure 36: DomoFinance Binary “best” RandomForest hyperparameters 

Using the above parameters, we obtained the following results during the cross-validation on the 

train set: 
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Figure 37: DomoFinance metrics with Binary “best” RandomForest hyperparameters  

As we can see, WoE and Target encoders perform the best on this train dataset for all the 3 metrics. 

On the test dataset we obtained the following results: 

Encoder Precision 1% Recall 1% ROC AUC 

Binary Encoder 0.086 0.074 0.743 

Target Encoder 0.075 0.066 0.751 

One Hot Encoder 0.108 0.094 0.739 

Count Encoder 0.089 0.078 0.743 

Ordinal Encoder 0.089 0.078 0.747 

WOE Encoder 0.070 0.061 0.747 
Figure 38: DomoFinance ROC_AUC with Binary “best” RandomForest hyperparameters prediction on the test dataset 

 

o OneHotEncoder best set of hyperparameters: 

 

Figure 39: DomoFinance OHE “best” RandomForest hyperparameters 

Using the above parameters, we obtained the following results during the cross-validation on the 

train set: 
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Figure 40: DomoFinance metrics with OHE “best” RandomForest hyperparameters  

As we can see, WoE and Target encoders perform the best on this train dataset for the ROC AUC 

metric. But on recall and precision Binary, OHE and Count encoders are better (but these metrics 

relate on the threshold). 

On the test dataset we obtained the following results: 

Encoder Precision 1% Recall 1% ROC AUC 

Binary Encoder 0.080 0.070 0.731 

Target Encoder 0.070 0.061 0.749 

One Hot Encoder 0.089 0.079 0.738 

Count Encoder 0.085 0.074 0.743 

Ordinal Encoder 0.089 0.078 0.727 

WOE Encoder 0.070 0.061 0.742 
Figure 41: DomoFinance ROC_AUC with OHE “best” RandomForest hyperparameters prediction on the test dataset 

o CountEncoder best set of hyperparameters:  

 

Figure 42: DomoFinance Count “best” RandomForest hyperparameters 

Using the above parameters, we obtained the following results during the cross-validation on the 

train set: 
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Figure 43: DomoFinance metrics with Count “best” RandomForest hyperparameters  

As we can see, WoE and Target encoders perform the best on this train dataset for the ROC AUC 

metric. On recall and precision Binary, Target and WOE encoders are better.  

On the test dataset we obtained the following results: 

Encoder Precision 1% Recall 1% ROC AUC 

Binary Encoder 0.080 0.070 0.701 

Target Encoder 0.080 0.070 0.737 

One Hot Encoder 0.089 0.078 0.723 

Count Encoder 0.080 0.070 0.726 

Ordinal Encoder 0.070 0.061 0.720 

WOE Encoder 0.080 0.070 0.732 
Figure 44: DomoFinance metrics with Count “best” RandomForest hyperparameters prediction on the test dataset 

 

o OrdinalEncoder best set of hyperparameters:  

 

Figure 45: DomoFinance Ordinal “best” RandomForest hyperparameters 

Using the above parameters, we obtained the following results during the cross-validation on the 

train set: 
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Figure 46:  DomoFinance metrics with Ordinal “best” RandomForest hyperparameters  

As we can see, WoE and Target encoders perform the best on this train. 

On the test dataset we obtained the following results: 

Encoder Precision 1% Recall 1% ROC AUC 

Binary Encoder 0.089 0.078 0.721 

Target Encoder 0.093 0.082 0.742 

One Hot Encoder 0.085 0.074 0.727 

Count Encoder 0.070 0.061 0.746 

Ordinal Encoder 0.094 0.082 0.732 

WOE Encoder 0.070 0.061 0.737 
Figure 47: DomoFinance metrics with Count “best” RandomForest hyperparameters prediction on the test dataset 

 

5. Conclusion 

As we saw, the target-based encoding technics (Target and WeightOfEvidence) provide good, if not 

better, results than the classic OneHotEncoder used in the scoring center. While keeping a lower 

number of columns.  

One of the main advantages of using a technique that doesn’t increase the number of columns, is 

that it allows us to gain a lot of time on some process (like Feature Selection). And has feature 

importance process that makes more sense by keeping all the information inside a variable. But it 

doesn’t mean that we should replace the current method by these new ones. The performance 

depends on the dataset. And it could variate from one to another. That’s why I recommend 

comparing One Hot Encoder to the target-based one on the same data to make the final choice (and 

if you have the time). 

An interesting next step should be to study “what is the impact of the different encoding techniques 

when there is a drift in the data?”. To answer this question, we could use the Adaptive Random 

Forest and compare how the different models (encoded with different methods) react to the drift.  

Also, it could be interesting to mix up the techniques on the same data depending on what variable 

we want to encode. For example, when we have a low cardinality categorical variable than 

OneHotEncoder could be used. But if the cardinality is high, the use of a target-based technique 

should be considered in order the keep a low dimension. Or in the scenario we have an ordinal data 

we should use the OrdinalEncoder and assign the correct order to the values inside. 

 



33 

6. References 

• Shahul, ES (2020) - An Overview of Encoding Techniques, Kaggle.com 

 

• Baijayanta, ROY (2023) - All about Categorical Variable Encoding, Towardsdatascience.com 

 

• John, HANCOCK and Taghi, KHOSHGOFTAAR (2020) - Survey on categorical data for neural 

networks, Journalofbigdata.springeropen.com 

 

• Shipra, SAXENA (2022) - Here’s All you Need to Know About Encoding Categorical Data (with 

Python code), Analyticsvidhya.com 

 

• Matt, CLARKE (2021) - How to use transform categorical variables using encoders, 

Practicaldatasience.co.uk  

 

• Denis, VOROTYNTSEV (2019) - Benchmarking categorical encoders, Towardsdatascience.com 

 

• Max, HALFORD (2018) - Target encoding one the right way, Maxhalford.github.io 

 

• category_encoders - Github.io, Documentation 

 

• Vinícius Trevisan (2022) - Interpreting ROC Curve and ROC AUC for Classification Evaluation, 

Towardsdatascience.com 

 

• Julie CAVARROC (2022) - fra-f-fullcb project 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.kaggle.com/code/shahules/an-overview-of-encoding-techniques
https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00305-w
https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-data-encoding/
https://practicaldatascience.co.uk/machine-learning/how-to-use-category-encoders-to-transform-categorical-variables
https://towardsdatascience.com/benchmarking-categorical-encoders-9c322bd77ee8
https://maxhalford.github.io/blog/target-encoding/
https://github.com/scikit-learn-contrib/category_encoders
https://contrib.scikit-learn.org/category_encoders/index.html
https://towardsdatascience.com/interpreting-roc-curve-and-roc-auc-for-classification-evaluation-28ec3983f077


34 

Chapter 2: South Africa Logistical Regression model for RCS 

 

1. Introduction 

The Scoring Center teams often use Logistical Regression models. The aim of these models is to 

attribute a “score” based on the input information of a client. It is a grade based on the values of his 

explanatory variables (for example: age, Socio-Professional Category, income). 

A score function can be represented by a score grid such as the following one: 

Age < 28 28 ≤ Age < 50 50+ 
 90 110 125 
SPC Student Other Dentist, notary 
 90 102 128 
Income < 800 800 ≤ Income < 4 000 4 000+ 
 90 119 135 

Figure 48: Score card example 

 

Based on this grid, an individual’s score can be calculated by doing the sum of the weights 

corresponding to each one of his attributes.  

For example, in the score presented in the above table, a 32-year-old dentist with a monthly income 

above 4,000 euros would have a score of 373 (= 110 + 128 + 135). 

Now that we can calculated a score, it’s possible to build subpopulations sorted by the model’s 

predicted risk level on an application population. And so, we can build a table to determine what 

actions to take according to the different costumer’s profiles: 

Score Predicted risk level Possible action 

≤ 352 High Refusal 

353 – 366 Average Require further study 

367 – 380 Moderate 
Loan application accepted 
(under the limit of 5 000€) 

381+ Low Loan application accepted 

Figure 49: Action table example 

 

In order to be used in credit risk management, the score model must be accurate, discriminating, 

and generalizable: 

• A model is accurate when, on the development population, the predicted risk rate per score 

range is close to the observed rate (i.e. when it represents accurately the reality). 

• A score is discriminating on a population when it manages to rank it in subpopulations 

whose scale of variation of risk rates is wide. It can also be said that a high-performing score 

makes it possible to discriminate the population of interest into two classes defined by the 

target. 

• It is said that a score has a good ability to generalize when it is discriminating and is accurate 

on a population that has not been used for development, whose characteristics are like those 

of the development population. 



35 

 

2. Context 

The RCS Group is an entity based in South Africa, being part of BNP Paribas Personal Finance since 

2014. RCS offers a range of retail financial services and products under its brand and in partnership 

with retailers in different markets. The core purpose of RCS is to improve people’s lifestyle being 

innovative in offering desirable and accessible credit products. Its offerings include clients store 

cards, cash and retail loans besides insurance offerings such as personal accident, critical illness, and 

income protection. The idea is to enable RCS customers to enjoy the convenience, comfort and peace 

of mind offered by these credit solutions. 

Risk score models are used in credit risk management to assess the solvency of clients, as well as the 

potential risk of non-repayment of loans granted by credit institutions or banks. In our case, this 

score was needed to predict if a client will be a “bad dept” on credit cards payment, only based on 

his granting data. 

The entity asked to develop a scorecard using a Logistic Regression. 

3. Data  

For some confidential reason, we will hide a maximum of information about the used 

variables while keeping the report understandable. 

a. Presentation 

The nature of data used are internal and Credit Bureau.  

For this model, we will be only using “granting” data. Which means that it will only use the data 

provided by the client when he/she fulfilled the form to give his/her information.  

We have 44 exploratory variables. We are using data related to the applicant incomes, related to 

his/her job, related to his/her expenses, to his/her sociodemographic situation, external information, 

and product related information. 

The target variable is ‘BD’ (Bad Debt), which is equal to 1 if 

the client did default 2 times on his credit card payment. 

Otherwise, it’s equal to 0. 

There are 7273 individuals in the dataset. With 29.8% (2168 

individuals) of BD. 

We are working with a low volume of data (less than 10 000 

individuals) and a risky population.  

 

 

 

 

 

70%

30%
Good Debt

Bad Debt

Figure 50: Risk repartition 
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Based on the Scoring Center guideline on low 

volume data, we are in a Category 2 of the low 

volume scenarios. The total amount of available 

data is limited (< 10 000) but there is a high-risk 

rate, giving more than 1250 bad payers. 

 

 

 

 

 

b. Data Analysis 

The top3 variables with the highest Information Value (IV) are: 

• Store dealer ID with 0.51 

• Applicant gross income with 0.50 (and a Gini of 0.23) 

• Expensed money for transports per month with 0.23 (and a Gini of 0.14) 

To have an easier reading of the graphs for the data analysis of categorical data, we will group the 

categories with less than 5% of occurrence to a new category called ‘OTHER’. For example, when 

looking at the variable store dealer ID, we have 579 unique values. Because a graph with this high 

number of categories is not readable, after grouping, we obtained the follow categories:  

• MISSING with around 5.88% of occurrence  

• 595886 with around 6.21% of occurrence 

• OTHER (the new category) with around 88.00% of occurrence 

Thanks to this method we can have a better understanding of the data. And so, we obtained the 

following graphics (the black dash line being the total averaged risk and the black dot being the 

averaged risk level in the category):  

• Store dealer ID 

 

Figure 51: Low volumes scenarios 

 

Figure 52: Store dealer ID analysis 
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We can observe that the store dealer number 595886 and the MISSING one have a lower risk level 

than the average. These two categories allow us to positively “discriminate” some individuals based 

on where they contracted their credit card.  

 

• Applicant gross income 

 

 

We can observe that increasing the applicant gross income, lowers the risk to be a “bad debt”. With a 

stark difference of risk between the lowest cut (less than 3300 income), with 43% of risky, and the 

highest incomes (more then 15000), with 17% of risky. 

 

• Expensed money for transports per month 

 

 

We can observe that increasing the expense related to the transport lowers the risk rate. The risk 

goes from 34% when having less than 100 for the transports. To 19% when having more than 450. So, 

an individual who allocates more money for his monthly transports is less risky than the others. 

For some confidential reason, we will only use the month for the data collection. 

The period is too short to analyze the stability of the data. The data was collected over 2 different 

periods. The first is from November to mid-December. And the second one is from February to May. 

There is a big break is the data collection starting from mid-December to mid-February. 

 

 

Figure 53: Applicant gross income analysis 

 

Figure 54: Expensed money for transports per month analysis 

 

Figure 55: Population per month analysis 
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Thanks to the above graph, we can see that most of the credit card were contracted after February. 

 

 

On the above graph, we can observe that the risk proportion is slightly higher on the first part of the 

data collection than on the second part. 

 

 

The average income of the applicants seems stable through time. 

 

 

Figure 56: Risk proportion through time 

 

Figure 57: Average applicant gross income through time 

 

Figure 58: Average applicant gross income through time grouped by BD 
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This time, when looking at the average gross income but grouped by “Good debt” and “Bad debt”, 

we observe that the bad debts have a lower gross income than the good one. This discrimination is 

respected through time.  

 

 

The average monthly expense for transport of the applicants seems stable through time. 

 

This time, when looking at the monthly expense for transport but grouped by “Good debt” and “Bad 

debt”, we can observe that the bad debts have a lower monthly expense for transport than the good 

one. This discrimination is respected through time.  

 

c. Modelization data base representativity  

When build a granting score, we only focus on the financed population because when know their 

payment comportment. This population may not be representative of the total demand. That is what 

we call the selection bias. 

d. Preselection of exploratory variables 

There are only two potential explicative variables (more than 0.02 of IV) with a volume of missing 

values greater than 5%:  

- Store dealer ID (IV = 0.514 and missing values volume = 5.789%) 

- External score (IV = 0.232 and missing values volume = 41.565%) 

4. Methodology 

Figure 59: Average applicant transport expenses 

 

Figure 60: Average applicant transport expenses grouped by BD 
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a. Description 

The model adjustment was realized thanks to the internal tool of the Scoring Center and results in 2 

steps:  

- Cutting the variables based on the maximization on the Gini index, while respecting 

constraint of minimal volumes at 5% (low volumes scenario) 

- Iterative logistic regression which adds to the model (at each step) the variable having the 

highest value of additional information 

First step of modelling is quantitative variables binning. This binning should respect the following 

rules: 

There must be at least 5% of the population in all modalities  

Binning should respect business sense.  

To do so, we tried to maximize the Gini of the variable with the intervals. While respecting the 

constraints. Here is an example with the applicant gross income: 

 

 

Qualitative variables are binned (regrouped) using business insight and descriptive statistics (such as 

Weight of Evidence for example). When working on categorical data, we want to regroup the 

categories that don’t respect the volume constraint with the nearest group of categories based on 

the risk rate. 

Missing values were analyzed to eliminate variables with too many of them, and to understand the 

reasons behind these missing values. The logical missing values were identified and marked by 

special values in all credit bureau variables. 

The green line represents the ROC curve of 

the raw variable (Gini = 0.2333) 

The red line represents the ROC curve of the 

variable with optimized intervals (Gini = 

0.238) 

The intervals are made to minimize the loss 

of the Area Under the Curve  

Figure 61: Binning modalities method 



41 

The following iterative process was applied to select variables or cross-variables for each tested 

model:  

- Step 1: Statistical ranking based on Information Value of binned variables  

- Step 2: The most powerful variables is chosen as the first variable of the model  

- Step 3: Remaining variables are ranked by delta IV (remaining Information Value that is not 

taken into account by the model), and the most powerful variable is added into the model.  

This iterative process continues till there is not enough remaining IV available. After each step, 

several checks were performed:  

- Nullity Wald test on logistic regressions coefficients  

- Nested dummy test   

- Business meaning and global grid consistency with the local teams. 

If one of the given above checks was not fulfilled, the variable could be dropped, or its binning could 

be adjusted. Performance level was also checked: if a variable does not improve model’s 

discrimination, it is not added. Indeed, a model with fewer characteristics is preferable, other things 

being equal. 

b. Sampling 

After discussing with the low volumes referent, we decided to train the model on the entire 

database. And then, when we obtained the selected features and the final categories, evaluate it 

with a cross-test on 5 folds. 

c. Final model selection  

For some confidential reason, we will change the variable names by X_i for the selected 

variables in the scorecards. 

The first scorecard obtained was the following: 

Variable Modalities Score Risk rate 
Significative 

test 

X_1 

(-inf, 3764] 38 0.43 True 

(3764, 4120] 45 0.37 True 

(4120, 4860] 50 0.34 False 

(4860, 5412] 49 0.33 False 

(5412, 6010] 51 0.32 False 

(6010, 7200] 54 0.29 False 

(7200, 9900] 57 0.24 False 

(9900, 12462] 61 0.21 False 

(12462, 20183] 67 0.17 False 

(20183, inf] 68 0.16 False 

X_2 

('2.0', '33.0') 38 0.42 True 

('17.0', '26.0', 
'6.0') 

44 0.38 False 

('11.0',) 50 0.35 True 

('12.0', '4.0') 46 0.30 False 

('23.0',) 53 0.30 False 
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('1.0', '20.0', 
'25.0', '3.0', '8.0') 

51 0.27 False 

('13.0',) 54 0.25 False 

('14.0', '15.0', 
'16.0', '19.0', 
'21.0', '22.0', 

'27.0', '30.0', '5.0', 
'7.0') 

60 0.22 False 

X_3 

(-inf, 158.0] 38 0.34 True 

(158.0, 480.0] 42 0.31 False 

(480.0, 570.0] 44 0.24 False 

(570.0, 960.0] 53 0.19 True 

(960.0, inf) 57 0.13 False 

X_4 

('CMGC', 'DSAR', 
'DSCS', 'FICE', 

'FISW', 'MEUR', 
'NPOL', 'OILC', 
'SDFW', 'SDIE') 

38 0.38 True 

('NPOS',) 43 0.37 False 

('CMCM', 'DSOR', 
'FIPO', 'OCSH') 

45 0.34 False 

('CMRE', 'DSLT', 
'FIMT', 'FIRE', 

'NPOH', 'NPUA', 
'OIOT') 

47 0.30 False 

('AGRI', 'FIHF', 
'MEOM', 'OIPS') 

52 27 False 

('CMAR', 'CMAT', 
'CMCA', 'CMMT', 
'CMNM', 'CMOG', 
'CMOP', 'CMSP', 
'DSAA', 'DSCB', 
'DSGA', 'DSGS', 

'DSME', 'DSOW', 
'DSPS', 'DSUP', 
'FIDP', 'FINR', 

'FIOF', 'MEOG', 
'MEPS', 'NPPO', 
'NPRO', 'NPSU', 
'OACN', 'OCAB', 
'OCAI', 'OCNE', 
'OCOT', 'OIAR', 
'OIHC', 'OIMP', 
'OIRM', 'OITP', 
'OPSA', 'SDAH', 

'SDPB') 

57 0.21 False 

X_5 

(1.0, inf) 38 0.36 True 

(-1.0, 1.0] 43 0.34 False 

(-inf, -1.0] 55 0.25 True 
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X_6 

('15', '32', '38', 
'52', '60') 

38 0.39 True 

('14', '30', '34', 
'40', '43', '59') 

41 0.33 False 

('9',) 46 0.29 True 

('31', '46') 41 0.24 False 

('16', '22', '25', 
'27', '29', '37', 

'44', '61') 
53 0.18 True 

 

The objective is to obtain a scorecard with only “True” values in the “Significative test” column. To do 

so, we will group the different modalities based on the risk rate. Applying this method might change 

the Information Value of the variables. And so, might change the final selected variables over 

processing different iterations. 

In the end after grouping the modalities to obtain “True” in the “Significative test”, we obtained the 

following scorecard for the IV: 

Variable Modalities Information Value 

X_1 

(-inf, 3764] 0.06 

(3764, 6010] 0.01 

(6010, 12462] 0.02 

(12462, inf) 0.08 

TOTAL 0.17 

X_2 

High_risk 0.04 

Medium_risk 0.00 

Low_risk 0.05 

TOTAL 0.09 

X_4 

High_risk 0.02 

Medium_risk 0.00 

Low_risk 0.06 

TOTAL 0.09 

X_3 
(-inf, 480] 0.02 

(480, inf] 0.08 

TOTAL 0.10 

X_6 

High_risk 0.02 

Medium_risk 0.00 

Low_risk 0.04 

TOTAL 0.06 

X_7 

(6, inf) 0.01 

(1, 6] 0.00 

(0, 1] 0.00 

(-inf, 0] 0.01 

TOTAL 0.02 

X_8 
(-inf, 0.118] 0.00 

(0.118, inf) 0.05 

TOTAL 0.05 

 

Figure 62: First scorecard 

Figure 63: Final scorecard with IV 
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In order to ease the reading, we renamed the modalities (only for categorical variables) based on 

their risk level:  

• X_2: 

o High_risk: 2.0, 33.0, 17.0, 26.0, 6.0, 11.0 

o Medium_risk: 12.0, 4.0, 23.0, 1.0, 20.0, 25.0, 3.0, 8.0 

o Low_risk: 13.0, 14.0, 15.0, 16.0, 19.0, 21.0, 22.0, 27.0, 30.0, 5.0, 7.0 

• X_4: 

o High_risk: CMGC, DSAR, DSCS, FICE, FISW, MEUR, NPOL, OILC, SDFW, SDIE 

o Medium_risk: CMCM, DSOR, FIPO, OCSH, CMRE, DSLT, FIMT, FIRE, NPOH, NPUA, 

OIOT, AGRI, FIHF, MEOM, OIPS 

o Low_risk: CMAR, CMAT, CMCA, CMMT, CMNM, CMOG, CMOP, CMSP, DSAA, DSCB, 

DSGA, DSGS, DSME, DSOW, DSPS, DSUP, FIDP, FINR, FIOF, MEOG, MEPS, NPPO, 

NPRO, NPSU, OACN, OCAB, OCAI, OCNE, OCOT, OIAR, OIHC, OIMP, OIRM, OITP, 

OPSA, SDAH, SDPB 

• X_6: 

o High_risk: 15, 32, 38, 52, 60, 14, 30, 34, 40, 43, 59 

o Medium_risk: 9, 31, 46 

o Low_risk: 16, 22, 25, 27, 29, 37, 44, 61 

o  

There are no remaining variables with a Delta IV > 0.02. 

We obtained the following final scorecard: 

 

Variable Name Variable Description Modalities and coefficients 

X_1 
Related to the 

applicant income 

(-inf, 3764] 
 

(3764, 6010] 
(6010, 
12462] 

(12462, 
inf) 

39 49 58 70 

X_2 
Related to the 
applicant job 

High_risk Medium_risk Low_risk  

39 44 53  

X_4 
Related to the 
applicant job 

High_risk Medium_risk Low_risk  

39 45 55  

X_3 
Related to the 

applicant expenses 
(-inf, 480] (480, inf]   

39 50   

X_6 
Related to the 

product 

High_risk Medium_risk Low_risk  

39 44 53  

X_7 
Credit Bureau 
information 

(6, inf) (1, 6] (0, 1] (-inf, 0] 

39 52 59 65 

X_8 
Related to the 

applicant expenses 
(-inf, 0.118] (0.118, inf)   

39 51   

Figure 64: Final scorecard with coefficients 
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As said before, because we are working on a low volume scenario, we don’t have any test or 

validation samples. But we can evaluate the model by using techniques that train multiple times the 

model on a part of the data, different each time, and each time evaluate this model on the left-out 

data.  

One of this evaluation methods is using cross-test (with k-fold test), we cut the total dataset into k 

parts, train the model k times on k-1 folds. And each time evaluate it on the left-out fold. The 

recommended parameter is k ∈ ⟦3;5⟧. In our case k is equal to 5 folds. 

 

 

 

With this method, using five folds, we obtained the following performances results (using quartiles). 

Looking at the Gini: 

 

 

We can expect to have a Gini value on the train between 0.33 and 0.35, with a median at 0.34 (mean 

of 0.341). And a Gini value on the test between 0.30 and 0.375, with a median at 0.33 (mean of 

0.333). 

Figure 65: Cross test explanation 

Figure 66: Gini using StratifieKFold 
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Looking at the Log Odds slope: 

 

 

We can expect to have a Log Odds slope value between 0.846 and 1.116, with a median at 0.972 

(mean of 0.974). Being around 1 is very nice. 

 

Looking at the Stability Index: 

 

 

We can expect to have a Stability Index value between 0.002 and 0.004, with a median at 0.007 

(mean of 0.0098). Being the nearest to 0 is nice. 

 

Let’s now look at the risk rate in each of these categories: 

Figure 67: Log Odds using StratifiedKFold 

Figure 68: Stability Index using StratifiedKFold 



47 

 

 

When looking at the above graph, we can see that the risk rate is decreasing by cuts (there is no 

inversion). Just for the intervals (310.0, 315.0] and (315.0, 320.0], the risk rates are very close (0.359 

and 0.358). 

 

Here is an overview of the volumes and risk rate of the modalities for the selected variables:  

 

 

- X_1 : increasing the variable lowers the risk 

X_1 

Figure 69: Risk rate by score cuts 

Figure 70: X_1 analysis 
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- X_2: it’s possible to regroup some modalities 

into High, Medium et Low risk categories 

 

- X_4: it’s possible to regroup some modalities 

into High, Medium et Low risk categories 

 

- X_6: it’s possible to regroup some modalities 

into High, Medium et Low risk categories 

 

 

- X_7: lowering the value lowers the risk 

 

 

 

X_2 X_4 

X_6 X_7 

Figure 71: X_2 analysis Figure 72: X_4 analysis 

Figure 73: X_6 analysis Figure 74: X_7 analysis 
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It’s important to check if the selected variables aren’t correlated (>0.5) by looking at the Cramer V 

matrix:  

 X_1 X_2 X_4 X_3 X_6 X_7 X_8 

X_1 1 0.15 0.11 0.31 0.08 0.08 0.19 

X_2  1 0.11 0.16 0.12 0.06 0.13 

X_4   1 0.19 0.12 0.05 0.14 

X_3    1 0.22 0.11 0.20 

X_6 
 

    1 0.07 0.16 

X_7 
 

     1 0.08 

X_8       1 

 

The highest correlation is observed between the variables “X_1” and “X_3” at 0.31 (< 0.5). 

We can affirm that the selected variables aren’t highly correlated, based on the threshold set by the 

Scoring Center (0.5). 

 

5. Example 

To clarify the way of using this model, here is a quick example on how to use it. 

- X_8: increasing the value lowers the risk 

 
- X_3: increasing the value lowers the risk 

 

 

X_8 X_3 

Figure 75: X_8 analysis 

Figure 76: X_3 analysis 

Figure 77: Cramer V matrix analysis 
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Let’s create a fake applicant named John: 

- X_1 = 4 023 

- X_2 = High risk 

- X_4 = Medium risk 

- X_3 = 495 

- X_6 = High risk 

- X_7 = 5 

- X_8 = 0,1 

Using the above scorecard, John will obtain the following score: 

John Score = 49 + 39 + 45 + 50 + 39 + 52 + 39 = 313 

 

 

This score puts him in a risky category (with a risk rate of 35.9%). Which is 6 points more than the 

average risk rate in the data set. 

The entity will have to determine a table to define what action to take regarding John’s application. 

 

6. Conclusion 

We were able to build a Logistical Regression model to attribute a score to an application based on 

the following granting information of the applicant:  

- The gross income  

- The employment types 

- The sector of employment 

- The expense for the transports 

- The code of the product 

- The number of "credit report" made to Credit Bureau 

- The proportion of his/her allocated to the rent 

 

We obtained a good model as we can see on its Gini curve:  

Figure 78: John’s score 
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The red line is detached from the blue one. So, it means that our model is discriminating. 

Another good metric to evaluate our model is the “max Kolmogorov–Smirnov test”. It compares the 

Good Debt and Bad Debt cumulative distributions and returns the maximum difference between 

them. 

Score Bad Debt – Good Debt 

(272.999, 303.0] 10.86% 

(303.0, 310.0] 18.63% 

(310.0, 315.0] 21.52% 

(315.0, 320.0] 24.42% 

(320.0, 325.0] 24.24% 

(325.0, 330.0] 22.92% 

(330.0, 336.0] 20.47% 

(336.0, 343.0] 16.24% 

(343.0, 354.0] 9.8% 

(354.0, 391.0] 0.0% 

 

In our case, we can see that the highest difference is for score bin (315.0, 320.0] with a value of 

24.42%. 

Although we have some good metrics to evaluate our model, there is a some very important 

weakness. 

The first one is due to the low volume scenario. We are working without any validation and/or test 

set. The consequence is that it’s difficult to evaluate the final model performances. 

Figure 79: Final model Gini 

Figure 80: Final model Kolmogorov–Smirnov test 
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Then we don’t know what to do for unknown categories. Once we grouped the known modalities, 

where should we put the unknown ones? The usual way to deal with this in the Scoring Center is to 

attribute the new unknown modality to the riskiest group. But this method lowers the model 

efficiency. 

Finally, the last one is the time robustness. Because we are working within a very short period (data 

collected on less than a year) we don’t know the robustness of the model and stability of the 

variables through time. It could be very interesting to obtain an out of time sample to evaluate our 

model on an unknown period. 

The only way to solve these problems would be to increase the size of the data. But it will be time 

consuming to collect more information. And the entity is in the need of a scorecard. 

The next step for this project is to being reviewed by the higher instances and other members of the 

mission in order to be validated or not.  
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General conclusion 

The first part of my apprenticeship, on the categorical encoders, was very interesting. I discovered a 

lot of new techniques on how to deal with the categorical variables. Even if, during this project, it 

was sometime a bit rough to deal with the apprenticeship rhythm (being at the school with my 

friends then working alone on my side at the company for days), I’m happy I developed my research 

and autonomous skills. 

The second part on the RCS project was probably the one I liked the most. Working on a real business 

project with a real business goal was very nice. I also learned a lot on the methodology of a business 

case and how to document your work. It was what I expected from this apprenticeship year. 

In the end, I really enjoyed doing this apprenticeship at BNP Paribas PF. During this year, I discovered 

a lot of new techniques and developed some skills through my works. I applied knowledges I 

obtained at the apprenticeship to some school projects or personal projects.  And vice versa. Thanks 

to the research I did on the categorical encoding techniques, I was able to obtain better results and 

gained time on a school project. It was my first experience in a large company.  

I’m very grateful toward the other members of the team. I learned a lot from them and hope that my 

work will be useful for them.  
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Annexes 

 Actualized resume  


