
APPRENTICESHIP REPORT

Data Scientist in the innovation desk team

X

FEUGA Victor

From September 2022 to September 2023

Company tutor: MARIE Aurelien

Academic supervisor: JOURDAN Astrid

School: CY Tech, PAU

Company: BNP Paribas Personal Finance, RISK, Scoring Center,

Merignac

2

Table of contents

Acknowledgements ... 3

Introduction ... 4

Chapter 1: Research about categorical variables encoding .. 5

1. Introduction ... 5

2. Techniques .. 6

i. Increase data frame shape .. 6

ii. Conserve the data frame shape .. 8

3. Methodology ... 12

4. Results ... 13

i. Metrics presentation ... 13

ii. Fraud score FULL-CB backup model .. 15

iii. DomoFinance project .. 25

5. Conclusion ... 32

6. References ... 33

Chapter 2: South Africa Logistical Regression model for RCS ... 34

1. Introduction ... 34

2. Context .. 35

3. Data ... 35

a. Presentation .. 35

b. Data Analysis ... 36

c. Modelization data base representativity .. 39

d. Preselection of exploratory variables .. 39

4. Methodology ... 39

a. Description .. 40

b. Sampling .. 41

c. Final model selection .. 41

6. Conclusion ... 50

General conclusion .. 53

Annexes ... 54

3

Acknowledgements

I would like to thank first MARIE Aurelien, my company tutor, and TABARY Edouard, the manager

of the team, who accepted me for this position at BNP Paribas Personal Finance and allowed me to

do this apprenticeship. I would also like to thank all the other members of the team for helping

during this year.

Then, I want to thank all the other colleagues or employees I met at the office or talked to via teams.

Everyone was kind to me, and it was very pleasant to come work at the BNP offices.

Finally, I would like to thank JOURDAN Astrid, my pedagogical referent, which stayed available during

this year if I ever encountered any problem.

4

Introduction

 From September 2022 to September 2023, I did an apprenticeship as a member of the

Innovation Desk team at the Scoring Center in the filial Risk of BPN Paribas Personal Finance located

in Merignac. Through this year of apprenticeship, I wanted to increase my skills in Data Science,

discover new techniques and learn more about the working environment of a big company.

The office is in Merignac near the airport. It’s like a private campus with 2 buildings for employee’s

offices, a big parking lot and a cafeteria. The working environment is very comfortable with new

open spaces and soundproofing rooms for meetings. As a Bordeaux native, I was very happy to work

in my hometown for a bit after spending most of my student life in Pau.

The team I joined is composed of 5 data scientists (Wael, Julie, Kenza, Aurelien, Angelina) and 1 team

manager (Edouard). Their main objective is to discover and introduce machine learning models for

different missions related to the scoring center.

The aim of this apprenticeship was, in a first time, to assist the data scientists of the team by doing a

research work about categorical encoders. And then, having a more business-oriented mission by

building a scorecard using logistic regression to identify “bad debt” individuals on credit cards for a

filial in South Africa.

5

Chapter 1: Research about categorical variables encoding

1. Introduction

The data preprocessing has a very important influence when it comes to the Machine Learning

results. Most of the models can’t handle categorical variables (like RandomForest models which are

mainly used at the ScoringCenter), except if we change them into numerical values. The model

performances will rely on how we will encode those data. Depending on the method used, the

predictions can be highly impacted. And so, the precision might be increased or decreased.

There are 2 types of categorical variables. Nominal’s ones, which don’t have any order notion (ex:

“cow, dog, cat” or “France, Japan, USA, Brazil”). And the ordinal’s ones, which can be ordered (ex:

“good, average, bad”). As presented in the example below:

Animal Country Result

cow Japan good

cow France average

cat Brazil good

dog France bad

To begin with, it’s important to do an overview of the different encoding techniques.

The Kaggle kernel by Shahul E. allows to learn and try some of the most used encoding techniques

(such as Label, OneHot, FeatureHashing and Target). For each encoding technique, it runs and tests

in a simple logistic regression model.

The article by Baijayanta R. is a state of art of all the current techniques (the author keeps it updated

by adding new encoding methods). It presents each method and provides examples on how to do it.

The research paper by John H. and Taghi K. investigates current techniques for representing

qualitative data as input to neural networks. Even if the ScoringCenter doesn’t work with neural

networks, the document explains how work different encoding methods (Label, Count, OneHot,

LeaveOneOut and Hashing).

The research paper by Shipra S. explains what’s Categorical Data Encoding, presents different

encoding techniques (Label, OneHot, Dummy, Effect, Binary N, BaseN, Hash and Target) and when to

use them. This research paper introduces the category_encoders python library.

The Matt C. article, which is a step-by-step guide, presents us how to use the category_encoders

python library in a real use case. And provides a “simple” benchmark of the different performances

of each encoder on a classification model (XGBClassifier).

The TowardsDataScience article by Denis V. is a benchmark of different categorical encoder

techniques present in the category_encoders library, using single and double validation. The

methodology used in this research’s inspired by his work.

There is a lot of ways to encode categorical variables into numerical values to use them in our

models. In this document, we will review different of this encoding techniques. We will study what

are their Pros and Cons. And will see the results on real application cases.

Our 3 keys objectives are:

• Performance, we want to have an encoding technique that can provide better or

even results than the current solution.

Nominal variables
Ordinal variable

6

• Dimension, the less columns our dataset obtains after encoding, the better it’s

for tree-based models. As the dimensionality increases the number of possible

combinations of parameters for machine learning algorithms to search through

explodes exponentially.

• Interpretability, we want to use an encoding method that’s simple to

understand. And allow us to easily understand how our model works. Let’s take

the example of feature importance. With this technique we can calculate a score

for all the input features for a given model (the scores simply represent the

“importance” of each feature). The encoding methods that increase the number

of columns (like One Hot Encoding) will increase the number of features. And so,

reduce the interpretability of the feature importance.

To make it simple, the following techniques were selected based on the interpretability constraint.

And if we can easily make them by our hands (in case the library is disable).

2. Techniques

Let’s make a state of art of the different encoding techniques used. For each encoder, we will

look at how it works, the pros/cons and how it handles missing values.

i. Increase data frame shape

1. One Hot Encoding

The One Hot Encoding is currently the most used method to encode categorical variables. The

encoder creates several additional features based on the number of unique values in the categorical

feature.

For example, for the categorical variable “color” with unique values red, blue and green inside, the

One Hot Encoder will create 3 new columns named “color_red”, “color_blue” and “color_green”.

Those variables will take the value 1 depending on the observation color. Otherwise, it will be 0.

Figure 1: One Hot Encoding

Pros:

• Simple to understand

• Powerful for non-tree models

Cons:

7

• Can add a lot of new columns (depending on if the encoded variable has a lot of

categories)

• Low readability on analysis feature graphs

Handling missing value:

 The One Hot Encoder from the library category_encoders will by default encode a new value

as 0 in every dummy column. In the example below, Purple is a new value that didn’t exist during the

encoder fitting.

Figure 2: One Hot Encoding missing value

Note:

 For regression, it’s advised to use N-1 columns after encoding in order to exclude

redundancy, with N the number of categories in our variable. To do this, we must drop the first

column after One Hot Encoding. It allows us to avoid the “dummy variable” trap, a scenario in which

two or more variables are highly correlated. In simple terms, one variable can be predicted from the

others.

2. Binary Encoding

The Binary Encoding converts the categories from a variable into a binary code. If there is N

categories in a column, the encoder will create log (base 2) N new columns.

For example, let’s encode a variable with 6 different categories. By using the binary encoder, we will

only have 3 new columns in our dataset. Meanwhile, with the One Hot Encoding, we would have

created 6 new columns. Now, if we want to encode a variable with 120 categories, we will only

create 7 new columns with Binary Encoding. Instead of 120 new columns with One Hot Encoding.

Here’s an example:

Figure 3: Binary vs OHE

8

Figure 4: Binary Encoding

Pros:

• Works well for variables with a high number of categories

• Save storage

• Reduce the dimensional troubles for high cardinality data

Cons:

• Don’t give any information with the new columns
• Low readability on the feature graph analysis

Handling missing value:

The Binary Encoder from the library category_encoders will by default encode a new value as

0 in every binary column. In the example below, Purple is a new value that didn’t exist during the

encoder fitting.

Figure 5: Binary Encoding missing value

ii. Conserve the data frame shape

1. Ordinal Encoding

With Ordinal Encoding, each category will be transformed with an integer between 1 and N

(N the number of different categories in our variable). If we have ordinal data, an optional mapping

dictionary can be passed in argument. In this case, we use the knowledge that there is some true

order to the classes themselves. For example, let’s say we want to encode a column “Temperature”

with 4 different categories (Hot, Cold, Very Hot, Warm). We must give a logical order to this value to

encode them correctly: Cold < Warm < Hot < Very Hot. Otherwise, the classes are assumed to have

no true order, and integers are selected at random.

9

Figure 6: Ordinal Encoding

Pros:

• Easy to understand

• Low storage

Cons:

• If the variable is ordinal, the user must do it by hand to give the order of the categories

• Can create a notion of order that doesn’t exist between the categories if they are not

ordinal. The rank may result in an undesired bias and separate possible interesting

combinations

Handling missing value:

The Ordinal Encoder from the library category_encoders will by default encode a new value

by -1. In the example below, Purple is a new value that didn’t exist during the encoder fitting.

Figure 7: Ordinal Encoder missing value

2. Count Coding

Count encoding replaces each categorical value with the number of times it appears in the

dataset.

Figure 8: Count Encoding

Pros:

• Easy to understand

• Useful for trees models

10

Cons:

• If the train sample is different enough from the population, the model may overfit the

training data because

• Risk to lose information if 2 categories have the same count

Handling missing value:

The Count Encoder from the library category_encoders will by default encode a new value by

0. In the example below, Purple is a new value that didn’t exist during the encoder fitting.

Figure 9: Count Encoding missing value

3. Target Encoding

The Target Encoding uses the information coming from the target variable. This process will

transform the values from the categorical variable by the probability to have 1 in the target variable

for each category (as explained in Figure 10).

As shown in the below graph, we can see we have 4 values Hot in the categorical variable

“Temperature”. 4 Hot on 3 have target value of 1 (column “Target “). That’s why, the Hot values will

be encoded by ¾ = 0.75

Figure 10: Target Encoding, image by Baijayanta R.

The category_encoders library includes a smoothing operation. This technique is particularly useful to

handle situations when some of the categories are not well represented.

The example from Max H. blog might help to explain the smoothing idea: “Imagine a new movie is

posted on IMDB and it receives three ratings. Taking into account the three ratings give the movie an

average of 9.5. This is surprising because most movies tend to hover around 7, and the very good

ones rarely go above 8. The point is that the average can’t be trusted because there are too few

values. The trick is to “smooth” the average by including the average rating over all movies. In other

11

words, if there aren’t many ratings we should rely on the global average rating, whereas if there

enough ratings then we can safely rely on the local average.”

Pros:

• Simple and powerful

Cons:

• Target Leakage, encode with information of the target variable we are trying to predict

• If the train sample is different enough from the population, the model may overfit the

training data because mean values will be different

• High risk when there is a drift on the encoded data when the target proportions change

Handling missing value:

The Target Encoder from the library category_encoders will by default encode a new value by

the target mean (during the encoder fitting). In the example below, Purple is a new value that didn’t

exist during the encoder fitting.

Figure 11: Target Encoding missing value

4. Weight Of Evidence Encoding

The Weight Of Evidence Encoding measures the “strength” of a grouping technique to separate

good and bad. It’s calculated with the following formula:

𝑊𝑂𝐸𝑐𝑎𝑡 = ln(
%𝐺𝑂𝑂𝐷𝑐𝑎𝑡

%𝐵𝐴𝐷𝑐𝑎𝑡
)

Pros:

• Create a new subclass if 2 variables have the %Good and %Bad

Figure 12: Weight of Evidence Encoding

12

Cons:

• Target Leakage, encode with information of the target variable we are trying to predict

• If the train sample is different enough from the population, the model may overfit the

training data because mean values will be different

• High risk when there is a drift on the encoded data when the target proportions change

Handling missing value:

The Weight of Evidence Encoder from the library category_encoders will by default encode a new

value by 0.00. Meaning this new value is expected to have the same percentage of good and bad. In

the example below, Purple is a new value that didn’t exist during the encoder fitting.

3. Methodology

Now we are going to see the methodology used to compare the encoders performances on a

dataset.

Firstly, we need to have prepared and cleaned our dataset. And make sure that the categorical

columns we want to encode have the pandas type ‘category’. We will then split our dataset into a

train (80%) and a test (20%) sample. Make sure your samples are stratified on the target variable

when doing the train test split.

Secondly, we are going to apply the encoderPerfTraining function on our train data. This function

takes for arguments a list of declared encoding methods, the number of runs we want to perform,

the training dataset and a sklearn binary classifier. We will then generate 5 stratified folds (split data

into train/validation sets) from our train dataset. And for every fold, we will fit our encoders on the

current train fold. Then, transform the train and validation data. Afterwards, we fit the classifier on

the encoded train fold to predict the encoded validation fold. With the prediction, we can provide

metrics (ROC_AUC, Accuracy, Recall, etc.) for each encoder on each fold. We repeat this operation

until we reached the number of runs the user asked.

Thirdly, after doing all the runs, we obtain a data frame with all the metrics for each run of each

encoder (using the return by encoderPerfTraining). And so, we obtain a boxplot of each metric with

the function encoderGraphPerf. We can now compare which encoder performed better for our

classifier on our train dataset.

Finally, we can select the best encoder on the train data based on the different performances. And

apply it on the test dataset to see how it performs in a real situation. We can compare the new

results to the past ones to see if the new encoding technique changed the performances.

Figure 13: Weight of Evidence Encoding

13

The following schema (Figure 14) presents what is the main logic behind this program.

Figure 14: Program schema

“* nb_runs” is a variable given by the user.

“* nb_folds” is by default set to 5 in the encoderPerfTraining function (n_folds=5).

“* nb_encoders” depends on the number of encoders the user wants to test.

The “Classifier” is decided and declared by the user. It must be a binary sklearn classifier (for

example, a random forest).

This program doesn’t give a final encoder choice to the user. But it allows him to have the different

performances to make his own choice.

4. Results

Before looking at the results of this program, it is important to present the decision metrics used to

evaluate the performances.

i. Metrics presentation

1. Confusion Matrix

Confusion matrices represent counts from predicted and actual values. It can be represented as the

following table for a binary classification problem:

14

2. Accuracy score

The accuracy score is an evaluation metric that measures the number of correct predictions made by

a model. It’s calculated by dividing the number of correct predictions by the total number of

predictions. Although it’s a very easy to understand metric, it doesn’t work well on imbalanced

datasets. The formula to calculate it is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

3. Precision score

The precision score is the proportion of actual positives in all the positive predictions. The formula

used to calculate it is:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

4. Recall score

The recall score is the proportion of actual positives predicted correctly. The formula used to

calculate it is:

𝑅𝑒𝑐𝑎𝑙𝑙𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

5. ROC AUC score

It’s mandatory to define what are ROC (Receiver Operating Characteristic) curves to understand the

ROC AUC score.

A ROC curve is intended to show how well the model works for every possible threshold. By

confronting the True Positive Rate (𝑇𝑃𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
) to the False Positive Rate

(𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
).

On the following plots, the green line is when TPR = FPR. While the blue line represents the ROC

curve of the classifier. If the ROC curve is exactly on the green line, it means that the classifier has the

same predictive power as flipping a coin.

 Predicted

Negative (0) Positive (1)

True
Negative (0) True Negatives (TN) False Positive (FP)

Positive (1) False Negative (FN) True Positive (TP)

15

Figure 14: ROC Curves, image by Vinícius T.

As shown on the Figure 14, on the left plot the blue line is relatively close to the green one, which

means that the classifier is bad. The middle one is a good enough classifier. The rightmost plot shows

a good classifier, with the ROC curve closer to the axes and the “elbow” close to the coordinate (0, 1).

To make it short, the bigger the area under the blue curve is, the better it is.

The ROC AUC (Area Under the Curve) score is a metric that evaluates a ROC curve. It takes a value

between 0.5 and 1. The score measures the area under the curve of the ROC curve. A score around

0.5 means that the model is “bad”. And a score near 1 means that the model is “good”.

ii. Fraud score FULL-CB backup model

The FULL-CB product is an online payment facility in 3 or 4 times for French Ecommerce

platforms. The purchase amounts variate between 90€ and 3000€. On this product, no supporting

documents are requested from the client. He only needs to fill an online form. The process is a 100%

dematerialized. For the backup model we only use granted data, the initial train dataset has around

674 000 individuals for the train set, around 168 000 individuals for the test set and around 180 000

for the out of time set. They have 280 columns each. The target variable is ‘MP_ECH2’, which

indicates if the person made a fraud or not.

In order to gain time in the Data exploration and Modelling steps, we will use the results obtained by

Julie CAVARROC presented in her project. The encoding technique selected for the categorical

variables is a One Hot Encoder.

The idea is not to compete against Julie’s model by optimizing the process. Instead, we want to see if,

with almost the same variables and the same random forest model, we can increase the

performances by using a different encoder.

For some confidential reason, the non-categorical features will not be named in this

report.

Using all columns.

Before the features selection step, the initial project kept 54 variables (after a One Hot Encoding

process).

In order to use our encoders as expected, we will reverse the One Hot Encoding process. And keep

the origin variables used before the One Hot Encoding. In the end, there are 42 variables created by

the One Hot Encoder. After reversing the encoding, the 42 columns became 7 categorical variables.

16

We are using information about sociodemographic, financial situation, …

Here is a sum up of the final columns:

• 7 numerical

• 5 binaries

• 7 categorical (BANK_CLEAN with 9 values, LEVEL_CLEAN with 4 values, BRAND_CLEAN with 3

values, TYPE_CLEAN with 3 values, ORDERDATE_MONTH with 12 values, DOMAINE_EMAIL

with 5 values, SECTEUR_VENDEUR with 7 values)

Here is an extract of the final train data frame before using it:

Figure 15: FULL-CB Backup Train data extract after reversing One Hot Encoding

The random forest used is the one selected on the source project. So, it’s optimized on One Hot

Encoded data. The main hyperparameters used are 100 trees and a depth of 16.

Finally, after processing the encoding techniques tester, here are the results after processing 15 runs

at the cut-off 1%:

The OneHotEncoder averages better results than the others. But scale wise, the difference in the

results is very low. For example, there is only a bit more than 1% of difference between the best

OneHotEncoder and the worse CountEncoder on the ROC AUC metric. Although the metrics results

come from a RandomForest optimized for a OneHotEncoding preprocessing, the other encoding

techniques have similar/close results. So, we can conclude that the other encoding techniques have

similar results while having less columns added to the data frame then with OneHotEncoding.

In OneHotEncoding, the data frame had 19 columns before encoding. And had 54 columns after

encoding. While with BinaryEncoding, the data frame had 33 columns after encoding. Target, Count,

Figure 16: FULL-CB Backup encoding methods metrics

17

Ordinal and WeightOfEvidence encoders don’t change the shape of the data frame after encoding.

So, it kept its original shape with 19 columns.

NOTE: Because Target et WeightOfEvidence encoders are both based on the target, the models have

similar results. There is a convergence in the results when we run a lot of iterations using this

method.

The next step is to test for each encoder what are the selected columns after the features

selection process (developed in the initial work). It will allow us to understand what columns are

optimized for each encoding techniques.

Feature selection for each encoder.

The initial project has an internal function that select feature based on permutation feature

importance. It also does a hyperparameters optimization for a random forest at the same time.

We will use the 19 variables that were selected to do the feature selection in the initial project.

Those variables have the following type:

• 7 numerical

• 5 binary

• 7 categorical (BANK_CLEAN, LEVEL_CLEAN, BRAND_CLEAN, TYPE_CLEAN,

ORDERDATE_MONTH, DOMAINE_EMAIL, SECTEUR_VENDEUR)

Because One Hot and Binary encoders create new columns, the feature selection process is longer

then with the other techniques:

• Between 5 hours 30 minutes and 6 hours for One Hot and Binary

• Between 2hours 40 minutes and 3 hours 40minutes for Ordinal, Count, Target and

Weight Of Evidence

We want to compare what features will be selected for each encoder on the same dataset. To do so,

we are going to select the iteration that has a good performance (based on precision, recall and roc

auc scores) and has reduced the number of columns (in order to reduce complexity).

Here is an overview of the different performances for every encoding technique:

18

Figure 17: Features selection precision score results

Figure 18: Features selection recall score results

Figure 19: Features selection ROC AUC score results

19

The x-axis is the number of selected columns in the features selection. The y-axis is the performance

of the metric in %. The numbers under each marker represent the iteration number realized in the

process.

An interesting thing to observe is that encoders who don’t increase the shape (Count, Target,

Ordinal, WoE) of the data frame have better results for the same number of columns then the ones

who increases the size (OHE, Binary). For example, on the precision (Figure 18) for 11 columns, there

is around 2% of difference between the TargetEncoder and the OneHotEncoder in favor of the Target

for the same number of selected columns.

Let’s now see the best option for every encoder. To do so, we must select the iteration

during the feature selection which doesn’t have too many columns and still has good performances

on the different metrics. This step is very subjective and depends on the analyst preferences or

obligations.

Without looking at the performances, we can already see a difference just with the

processing time of the used feature selection function:

• OneHot and Binary: between 5 hours 30 minutes and 6 hours

• Ordinal, Count, Target and WeightOfEvidence: between 2 hours 40 minutes and

3 hours 40 minutes

Here are the performances of the feature selection process for each encoding techniques:

o BinaryEncoding

Here are the results of the feature selection for the OneHotEncoding technique:

Figure 20: OneHotEncoding features selection results

From the previous graph, we can see that the iteration number 8 has good metrics and doesn’t have

a lot of selected columns (only 11 instead of the 55 initial ones). Among the 11 final columns of this

feature selection, the encoded categorical ones are: BANK_CLEAN_BANQUE_POSTALE,

LEVEL_CLEAN_CLASSIC, DOMAINE_EMAIL_HOTMAIL, SECTEUR_VENDEUR_GPE_CONFORAMA,

BANK_CLEAN_Others, BANK_CLEAN_BNP_PARIBAS.

20

o BinaryEncoding

Here are the results of the feature selection for the BinaryEncoding technique:

Figure 21: BinaryEncoding features selection results

From the previous graph, we can see that the iteration number 6 has good metrics and

doesn’t have a lot of selected columns (only 11 instead of the 33 initial ones).

Among the 11 final columns of this feature selection, the encoded categorical ones are:

BANK_CLEAN_0, BANK_CLEAN_3, LEVEL_CLEAN_1, DOMAINE_EMAIL_0, LEVEL_CLEAN_2,

SECTEUR_VENDEUR_2.

o OrdinalEncoding

Here are the results of the feature selection for the OrdinalEncoding technique:

Figure 22: OrdinalEncoding features selection results

From the previous graph, we can see that the iteration number 4 has good metrics and

doesn’t have a lot of selected columns (only 11 instead of the 19 initial ones).

21

Among the 11 final columns of this feature selection, the encoded categorical ones are:

BANK_CLEAN, DOMAINE_EMAIL, LEVEL_CLEAN, SECTEUR_VENDEUR, TYPE_CLEAN, BRAND_CLEAN.

o CountEncoding

Here are the results of the feature selection for the CountEncoding technique:

Figure 23: CountEncoding features selection results

From the previous graph, we can see that the iteration number 4 has good metrics and

doesn’t have a lot of selected columns (only 11 instead of the 19 initial ones).

Among the 11 final columns of this feature selection, the encoded categorical ones are:

BANK_CLEAN, DOMAINE_EMAIL, LEVEL_CLEAN, SECTEUR_VENDEUR, TYPE_CLEAN.

o TargetEncoding

Here are the results of the feature selection for the TargetEncoding technique:

Figure 24: TargetEncoding features selection results

22

From the previous graph, we can see that the iteration number 4 has good metrics and

doesn’t have a lot of selected columns (only 11 instead of the 19 initial ones).

Among the 11 final columns of this feature selection, the encoded categorical ones are:

DOMAINE_EMAIL, SECTEUR_VENDEUR, LEVEL_CLEAN, BRAND_CLEAN, TYPE_CLEAN.

o WeightOfEvidence

Here are the results of the feature selection for the WeightOfEvidence technique:

Figure 25: WeightOfEvidence features selection results

From the previous graph, we can see that the iteration number 4 has good metrics and

doesn’t have a lot of selected columns (only 11 instead of the 19 initial ones).

Among the 11 final columns of this feature selection, the encoded categorical ones are:

DOMAINE_EMAIL, SECTEUR_VENDEUR, LEVEL_CLEAN, BRAND_CLEAN, TYPE_CLEAN

Now, let’s compare the performances on the test dataset. For a given encoder, we will use

the 11 columns selected in the Feature Selection process. And run a random search with cross

validation in order to find the “best set” of hyperparameters for a random forest. Once we have this

set of hyperparameters, we can train and test the Random Forest on the encoded data.

The following schema resumes the process steps for 1 encoder:

23

Figure 26: Steps schema

After processing this program, we obtained the following table on the test data with a cut-off set at

1%:

Encoder Precision 1% Recall 1% ROC AUC

One Hot Encoder 0,235 0,104 0,702

Binary Encoder 0,252 0,111 0,707

Ordinal Encoder 0,284 0,126 0,734

Count Encoder 0,282 0,125 0,734

Target Encoder 0,287 0,127 0,741

Weight Of Evidence 0,278 0,123 0,739

On the above table, the Target Encoder is the best technique. It outperforms the One Hot Encoder by

5.2% on the precision.

We obtained the following table on the out of time data with a cut-off set at 1%:

Encoder Precision 1% Recall 1% ROC AUC

One Hot Encoder 0,233 0,115 0,696

Binary Encoder 0,229 0,101 0,699

Ordinal Encoder 0,265 0,124 0,724

Count Encoder 0,267 0,132 0,728

24

Target Encoder 0,258 0,132 0,731

Weight Of Evidence 0,26 0,132 0,731

On the above table, the Count Encoder is the best technique. It outperforms the One Hot Encoder by

3.4% on the precision.

Also, it can be interesting to study the difference between the feature importance of their

RandomForest. To do so, we will compare the OneHotEncoder and the Target:

 Figure 27: One Hot Encoder Feature importance

In the Feature importance using the One Hot Encoder, 6 features come from 4 encoded categorical

variables:

• BANK_CLEAN → BANK_CLEAN_BANQUE_POSTALE, BANK_CLEAN_Others,

BANK_CLEAN_BNP_PARIBAS

• LEVEL_CLEAN → LEVEL_CLEAN_CLASSIC

• DOMAINE_EMAIL → DOMAINE_EMAIL_HOTMAIL

• SECTEUR_VENDEUR → SECTEUR_VENDEUR_GPE_CONFORAMA

25

 Figure 28: Target Encoder Feature importance

In the Feature importance using the Target Encoder, 6 features come from 6 encoded categorical

variables. But compared to the One Hot Encoder, we keep all the information in the variables:

• BANK_CLEAN (all 9 values)

• LEVEL_CLEAN (all 4 values)

• DOMAINE_EMAIL (all 5 values)

• SECTEUR_VENDEUR (all 7 values)

• BRAND_CLEAN (all 3 values)

• TYPE_CLEAN (all 3 values)

In term of interpretability in the feature importance, the Target Encoder seems more “logical”

because we conserve all the information of each categorical variable. Plus, it allows us to see the

“real” importance of a feature in the Machine Learning model (and not just the importance of 1

feature). For example, if we sum the importance of the 3 BANK_CLEAN variables in the One Hot

Encoder Feature importance, we obtain 0.01 + 0.012 + 0.021 = 0.043. It’s half of the feature

importance of BANK_CLEAN in the Target Encoder (0.089).

We can conclude that the Target Encoder is a better technique in this scenario because of its positive

impact in the dimension, interpretability and increase in the performances. It would have increased

the performances of a “traditional model” (using the One Hot Encoding technique).

iii. DomoFinance project

The DomoFinance train data frame has 106 625 lines and 7 columns. The variables have the following

type:

• 4 numerical (LOAN_DURATION, APPLICANT_AGE, APPLICANT_SALARY,

RATIO_REQUEST_AMOUNT_BY_APPLICANT_SALARY)

• 3 categorical (PRODUCT_TYPE, MARITAL_STATUS, CSP_STATUS)

The target variable is “BAD_PAYER” which indicates if the individual has committed a fraud or not.

26

When running the encoding techniques tester with the default RandomForest provided by scikit-

learn, we obtain the following results (the threshold is set at 1%):

Figure 29: DomoFinance encoding methods metrics

We can see that with this RandomForest, the Target and Weight of Evidence encoders have better

metrics performances then others.

Now we want to see how these encoders perform compare to others when using the “best”

RandomForest for their cases. To do so, we will use a random search (combined with cross

validation) function in order to determine what are the best hyperparameters set for a

RandomForest using the Weight of Evidence or Target encoding.

o Weight of Evidence best set of hyperparameters:

Figure 30: DomoFinance WOE “best” RandomForest hyperparameters

Using the above parameters, we obtained the following results during the cross-validation on the

train set:

27

Figure 31: DomoFinance metrics with WOE “best” RandomForest hyperparameters

As we can see, WoE and Target encoders performed the best on the train dataset for all the 3

metrics.

On the test dataset we obtained the following results:

Encoder Precision 1% Recall 1% ROC AUC

Binary Encoder 0.072 0.065 0.724

Target Encoder 0.094 0.082 0.730

One Hot Encoder 0.070 0.061 0.731

Count Encoder 0.075 0.066 0.724

Ordinal Encoder 0.056 0.049 0.726

WOE Encoder 0.075 0.065 0.734
Figure 32: DomoFinance metrics with WOE “best” RandomForest hyperparameters prediction on the test dataset

o Target best set of hyperparameters:

Figure 33: DomoFinance Target “best” RandomForest hyperparameters

Using the above parameters, we obtained the following results during the cross-validation on the

train set:

28

Figure 34: DomoFinance metrics with Target “best” RandomForest hyperparameters

As we can see, WoE and Target encoders perform the best on this train dataset for all the 3 metrics.

On the test dataset we obtained the following results:

Encoder Precision 1% Recall 1% ROC AUC

Binary Encoder 0.084 0.074 0.741

Target Encoder 0.089 0.078 0.740

One Hot Encoder 0.103 0.090 0.733

Count Encoder 0.094 0.082 0.732

Ordinal Encoder 0.061 0.053 0.749

WOE Encoder 0.075 0.066 0.729
Figure 35: DomoFinance metrics with Target “best” RandomForest hyperparameters prediction on the test dataset

o Binary best set of hyperparameters:

Figure 36: DomoFinance Binary “best” RandomForest hyperparameters

Using the above parameters, we obtained the following results during the cross-validation on the

train set:

29

Figure 37: DomoFinance metrics with Binary “best” RandomForest hyperparameters

As we can see, WoE and Target encoders perform the best on this train dataset for all the 3 metrics.

On the test dataset we obtained the following results:

Encoder Precision 1% Recall 1% ROC AUC

Binary Encoder 0.086 0.074 0.743

Target Encoder 0.075 0.066 0.751

One Hot Encoder 0.108 0.094 0.739

Count Encoder 0.089 0.078 0.743

Ordinal Encoder 0.089 0.078 0.747

WOE Encoder 0.070 0.061 0.747
Figure 38: DomoFinance ROC_AUC with Binary “best” RandomForest hyperparameters prediction on the test dataset

o OneHotEncoder best set of hyperparameters:

Figure 39: DomoFinance OHE “best” RandomForest hyperparameters

Using the above parameters, we obtained the following results during the cross-validation on the

train set:

30

Figure 40: DomoFinance metrics with OHE “best” RandomForest hyperparameters

As we can see, WoE and Target encoders perform the best on this train dataset for the ROC AUC

metric. But on recall and precision Binary, OHE and Count encoders are better (but these metrics

relate on the threshold).

On the test dataset we obtained the following results:

Encoder Precision 1% Recall 1% ROC AUC

Binary Encoder 0.080 0.070 0.731

Target Encoder 0.070 0.061 0.749

One Hot Encoder 0.089 0.079 0.738

Count Encoder 0.085 0.074 0.743

Ordinal Encoder 0.089 0.078 0.727

WOE Encoder 0.070 0.061 0.742
Figure 41: DomoFinance ROC_AUC with OHE “best” RandomForest hyperparameters prediction on the test dataset

o CountEncoder best set of hyperparameters:

Figure 42: DomoFinance Count “best” RandomForest hyperparameters

Using the above parameters, we obtained the following results during the cross-validation on the

train set:

31

Figure 43: DomoFinance metrics with Count “best” RandomForest hyperparameters

As we can see, WoE and Target encoders perform the best on this train dataset for the ROC AUC

metric. On recall and precision Binary, Target and WOE encoders are better.

On the test dataset we obtained the following results:

Encoder Precision 1% Recall 1% ROC AUC

Binary Encoder 0.080 0.070 0.701

Target Encoder 0.080 0.070 0.737

One Hot Encoder 0.089 0.078 0.723

Count Encoder 0.080 0.070 0.726

Ordinal Encoder 0.070 0.061 0.720

WOE Encoder 0.080 0.070 0.732
Figure 44: DomoFinance metrics with Count “best” RandomForest hyperparameters prediction on the test dataset

o OrdinalEncoder best set of hyperparameters:

Figure 45: DomoFinance Ordinal “best” RandomForest hyperparameters

Using the above parameters, we obtained the following results during the cross-validation on the

train set:

32

Figure 46: DomoFinance metrics with Ordinal “best” RandomForest hyperparameters

As we can see, WoE and Target encoders perform the best on this train.

On the test dataset we obtained the following results:

Encoder Precision 1% Recall 1% ROC AUC

Binary Encoder 0.089 0.078 0.721

Target Encoder 0.093 0.082 0.742

One Hot Encoder 0.085 0.074 0.727

Count Encoder 0.070 0.061 0.746

Ordinal Encoder 0.094 0.082 0.732

WOE Encoder 0.070 0.061 0.737
Figure 47: DomoFinance metrics with Count “best” RandomForest hyperparameters prediction on the test dataset

5. Conclusion

As we saw, the target-based encoding technics (Target and WeightOfEvidence) provide good, if not

better, results than the classic OneHotEncoder used in the scoring center. While keeping a lower

number of columns.

One of the main advantages of using a technique that doesn’t increase the number of columns, is

that it allows us to gain a lot of time on some process (like Feature Selection). And has feature

importance process that makes more sense by keeping all the information inside a variable. But it

doesn’t mean that we should replace the current method by these new ones. The performance

depends on the dataset. And it could variate from one to another. That’s why I recommend

comparing One Hot Encoder to the target-based one on the same data to make the final choice (and

if you have the time).

An interesting next step should be to study “what is the impact of the different encoding techniques

when there is a drift in the data?”. To answer this question, we could use the Adaptive Random

Forest and compare how the different models (encoded with different methods) react to the drift.

Also, it could be interesting to mix up the techniques on the same data depending on what variable

we want to encode. For example, when we have a low cardinality categorical variable than

OneHotEncoder could be used. But if the cardinality is high, the use of a target-based technique

should be considered in order the keep a low dimension. Or in the scenario we have an ordinal data

we should use the OrdinalEncoder and assign the correct order to the values inside.

33

6. References

• Shahul, ES (2020) - An Overview of Encoding Techniques, Kaggle.com

• Baijayanta, ROY (2023) - All about Categorical Variable Encoding, Towardsdatascience.com

• John, HANCOCK and Taghi, KHOSHGOFTAAR (2020) - Survey on categorical data for neural

networks, Journalofbigdata.springeropen.com

• Shipra, SAXENA (2022) - Here’s All you Need to Know About Encoding Categorical Data (with

Python code), Analyticsvidhya.com

• Matt, CLARKE (2021) - How to use transform categorical variables using encoders,

Practicaldatasience.co.uk

• Denis, VOROTYNTSEV (2019) - Benchmarking categorical encoders, Towardsdatascience.com

• Max, HALFORD (2018) - Target encoding one the right way, Maxhalford.github.io

• category_encoders - Github.io, Documentation

• Vinícius Trevisan (2022) - Interpreting ROC Curve and ROC AUC for Classification Evaluation,

Towardsdatascience.com

• Julie CAVARROC (2022) - fra-f-fullcb project

https://www.kaggle.com/code/shahules/an-overview-of-encoding-techniques
https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00305-w
https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-data-encoding/
https://practicaldatascience.co.uk/machine-learning/how-to-use-category-encoders-to-transform-categorical-variables
https://towardsdatascience.com/benchmarking-categorical-encoders-9c322bd77ee8
https://maxhalford.github.io/blog/target-encoding/
https://github.com/scikit-learn-contrib/category_encoders
https://contrib.scikit-learn.org/category_encoders/index.html
https://towardsdatascience.com/interpreting-roc-curve-and-roc-auc-for-classification-evaluation-28ec3983f077

34

Chapter 2: South Africa Logistical Regression model for RCS

1. Introduction

The Scoring Center teams often use Logistical Regression models. The aim of these models is to

attribute a “score” based on the input information of a client. It is a grade based on the values of his

explanatory variables (for example: age, Socio-Professional Category, income).

A score function can be represented by a score grid such as the following one:

Age < 28 28 ≤ Age < 50 50+
 90 110 125
SPC Student Other Dentist, notary
 90 102 128
Income < 800 800 ≤ Income < 4 000 4 000+
 90 119 135

Figure 48: Score card example

Based on this grid, an individual’s score can be calculated by doing the sum of the weights

corresponding to each one of his attributes.

For example, in the score presented in the above table, a 32-year-old dentist with a monthly income

above 4,000 euros would have a score of 373 (= 110 + 128 + 135).

Now that we can calculated a score, it’s possible to build subpopulations sorted by the model’s

predicted risk level on an application population. And so, we can build a table to determine what

actions to take according to the different costumer’s profiles:

Score Predicted risk level Possible action

≤ 352 High Refusal

353 – 366 Average Require further study

367 – 380 Moderate
Loan application accepted
(under the limit of 5 000€)

381+ Low Loan application accepted

Figure 49: Action table example

In order to be used in credit risk management, the score model must be accurate, discriminating,

and generalizable:

• A model is accurate when, on the development population, the predicted risk rate per score

range is close to the observed rate (i.e. when it represents accurately the reality).

• A score is discriminating on a population when it manages to rank it in subpopulations

whose scale of variation of risk rates is wide. It can also be said that a high-performing score

makes it possible to discriminate the population of interest into two classes defined by the

target.

• It is said that a score has a good ability to generalize when it is discriminating and is accurate

on a population that has not been used for development, whose characteristics are like those

of the development population.

35

2. Context

The RCS Group is an entity based in South Africa, being part of BNP Paribas Personal Finance since

2014. RCS offers a range of retail financial services and products under its brand and in partnership

with retailers in different markets. The core purpose of RCS is to improve people’s lifestyle being

innovative in offering desirable and accessible credit products. Its offerings include clients store

cards, cash and retail loans besides insurance offerings such as personal accident, critical illness, and

income protection. The idea is to enable RCS customers to enjoy the convenience, comfort and peace

of mind offered by these credit solutions.

Risk score models are used in credit risk management to assess the solvency of clients, as well as the

potential risk of non-repayment of loans granted by credit institutions or banks. In our case, this

score was needed to predict if a client will be a “bad dept” on credit cards payment, only based on

his granting data.

The entity asked to develop a scorecard using a Logistic Regression.

3. Data

For some confidential reason, we will hide a maximum of information about the used

variables while keeping the report understandable.

a. Presentation

The nature of data used are internal and Credit Bureau.

For this model, we will be only using “granting” data. Which means that it will only use the data

provided by the client when he/she fulfilled the form to give his/her information.

We have 44 exploratory variables. We are using data related to the applicant incomes, related to

his/her job, related to his/her expenses, to his/her sociodemographic situation, external information,

and product related information.

The target variable is ‘BD’ (Bad Debt), which is equal to 1 if

the client did default 2 times on his credit card payment.

Otherwise, it’s equal to 0.

There are 7273 individuals in the dataset. With 29.8% (2168

individuals) of BD.

We are working with a low volume of data (less than 10 000

individuals) and a risky population.

70%

30%
Good Debt

Bad Debt

Figure 50: Risk repartition

36

Based on the Scoring Center guideline on low

volume data, we are in a Category 2 of the low

volume scenarios. The total amount of available

data is limited (< 10 000) but there is a high-risk

rate, giving more than 1250 bad payers.

b. Data Analysis

The top3 variables with the highest Information Value (IV) are:

• Store dealer ID with 0.51

• Applicant gross income with 0.50 (and a Gini of 0.23)

• Expensed money for transports per month with 0.23 (and a Gini of 0.14)

To have an easier reading of the graphs for the data analysis of categorical data, we will group the

categories with less than 5% of occurrence to a new category called ‘OTHER’. For example, when

looking at the variable store dealer ID, we have 579 unique values. Because a graph with this high

number of categories is not readable, after grouping, we obtained the follow categories:

• MISSING with around 5.88% of occurrence

• 595886 with around 6.21% of occurrence

• OTHER (the new category) with around 88.00% of occurrence

Thanks to this method we can have a better understanding of the data. And so, we obtained the

following graphics (the black dash line being the total averaged risk and the black dot being the

averaged risk level in the category):

• Store dealer ID

Figure 51: Low volumes scenarios

Figure 52: Store dealer ID analysis

37

We can observe that the store dealer number 595886 and the MISSING one have a lower risk level

than the average. These two categories allow us to positively “discriminate” some individuals based

on where they contracted their credit card.

• Applicant gross income

We can observe that increasing the applicant gross income, lowers the risk to be a “bad debt”. With a

stark difference of risk between the lowest cut (less than 3300 income), with 43% of risky, and the

highest incomes (more then 15000), with 17% of risky.

• Expensed money for transports per month

We can observe that increasing the expense related to the transport lowers the risk rate. The risk

goes from 34% when having less than 100 for the transports. To 19% when having more than 450. So,

an individual who allocates more money for his monthly transports is less risky than the others.

For some confidential reason, we will only use the month for the data collection.

The period is too short to analyze the stability of the data. The data was collected over 2 different

periods. The first is from November to mid-December. And the second one is from February to May.

There is a big break is the data collection starting from mid-December to mid-February.

Figure 53: Applicant gross income analysis

Figure 54: Expensed money for transports per month analysis

Figure 55: Population per month analysis

38

Thanks to the above graph, we can see that most of the credit card were contracted after February.

On the above graph, we can observe that the risk proportion is slightly higher on the first part of the

data collection than on the second part.

The average income of the applicants seems stable through time.

Figure 56: Risk proportion through time

Figure 57: Average applicant gross income through time

Figure 58: Average applicant gross income through time grouped by BD

39

This time, when looking at the average gross income but grouped by “Good debt” and “Bad debt”,

we observe that the bad debts have a lower gross income than the good one. This discrimination is

respected through time.

The average monthly expense for transport of the applicants seems stable through time.

This time, when looking at the monthly expense for transport but grouped by “Good debt” and “Bad

debt”, we can observe that the bad debts have a lower monthly expense for transport than the good

one. This discrimination is respected through time.

c. Modelization data base representativity

When build a granting score, we only focus on the financed population because when know their

payment comportment. This population may not be representative of the total demand. That is what

we call the selection bias.

d. Preselection of exploratory variables

There are only two potential explicative variables (more than 0.02 of IV) with a volume of missing

values greater than 5%:

- Store dealer ID (IV = 0.514 and missing values volume = 5.789%)

- External score (IV = 0.232 and missing values volume = 41.565%)

4. Methodology

Figure 59: Average applicant transport expenses

Figure 60: Average applicant transport expenses grouped by BD

40

a. Description

The model adjustment was realized thanks to the internal tool of the Scoring Center and results in 2

steps:

- Cutting the variables based on the maximization on the Gini index, while respecting

constraint of minimal volumes at 5% (low volumes scenario)

- Iterative logistic regression which adds to the model (at each step) the variable having the

highest value of additional information

First step of modelling is quantitative variables binning. This binning should respect the following

rules:

There must be at least 5% of the population in all modalities

Binning should respect business sense.

To do so, we tried to maximize the Gini of the variable with the intervals. While respecting the

constraints. Here is an example with the applicant gross income:

Qualitative variables are binned (regrouped) using business insight and descriptive statistics (such as

Weight of Evidence for example). When working on categorical data, we want to regroup the

categories that don’t respect the volume constraint with the nearest group of categories based on

the risk rate.

Missing values were analyzed to eliminate variables with too many of them, and to understand the

reasons behind these missing values. The logical missing values were identified and marked by

special values in all credit bureau variables.

The green line represents the ROC curve of

the raw variable (Gini = 0.2333)

The red line represents the ROC curve of the

variable with optimized intervals (Gini =

0.238)

The intervals are made to minimize the loss

of the Area Under the Curve

Figure 61: Binning modalities method

41

The following iterative process was applied to select variables or cross-variables for each tested

model:

- Step 1: Statistical ranking based on Information Value of binned variables

- Step 2: The most powerful variables is chosen as the first variable of the model

- Step 3: Remaining variables are ranked by delta IV (remaining Information Value that is not

taken into account by the model), and the most powerful variable is added into the model.

This iterative process continues till there is not enough remaining IV available. After each step,

several checks were performed:

- Nullity Wald test on logistic regressions coefficients

- Nested dummy test

- Business meaning and global grid consistency with the local teams.

If one of the given above checks was not fulfilled, the variable could be dropped, or its binning could

be adjusted. Performance level was also checked: if a variable does not improve model’s

discrimination, it is not added. Indeed, a model with fewer characteristics is preferable, other things

being equal.

b. Sampling

After discussing with the low volumes referent, we decided to train the model on the entire

database. And then, when we obtained the selected features and the final categories, evaluate it

with a cross-test on 5 folds.

c. Final model selection

For some confidential reason, we will change the variable names by X_i for the selected

variables in the scorecards.

The first scorecard obtained was the following:

Variable Modalities Score Risk rate
Significative

test

X_1

(-inf, 3764] 38 0.43 True

(3764, 4120] 45 0.37 True

(4120, 4860] 50 0.34 False

(4860, 5412] 49 0.33 False

(5412, 6010] 51 0.32 False

(6010, 7200] 54 0.29 False

(7200, 9900] 57 0.24 False

(9900, 12462] 61 0.21 False

(12462, 20183] 67 0.17 False

(20183, inf] 68 0.16 False

X_2

('2.0', '33.0') 38 0.42 True

('17.0', '26.0',
'6.0')

44 0.38 False

('11.0',) 50 0.35 True

('12.0', '4.0') 46 0.30 False

('23.0',) 53 0.30 False

42

('1.0', '20.0',
'25.0', '3.0', '8.0')

51 0.27 False

('13.0',) 54 0.25 False

('14.0', '15.0',
'16.0', '19.0',
'21.0', '22.0',

'27.0', '30.0', '5.0',
'7.0')

60 0.22 False

X_3

(-inf, 158.0] 38 0.34 True

(158.0, 480.0] 42 0.31 False

(480.0, 570.0] 44 0.24 False

(570.0, 960.0] 53 0.19 True

(960.0, inf) 57 0.13 False

X_4

('CMGC', 'DSAR',
'DSCS', 'FICE',

'FISW', 'MEUR',
'NPOL', 'OILC',
'SDFW', 'SDIE')

38 0.38 True

('NPOS',) 43 0.37 False

('CMCM', 'DSOR',
'FIPO', 'OCSH')

45 0.34 False

('CMRE', 'DSLT',
'FIMT', 'FIRE',

'NPOH', 'NPUA',
'OIOT')

47 0.30 False

('AGRI', 'FIHF',
'MEOM', 'OIPS')

52 27 False

('CMAR', 'CMAT',
'CMCA', 'CMMT',
'CMNM', 'CMOG',
'CMOP', 'CMSP',
'DSAA', 'DSCB',
'DSGA', 'DSGS',

'DSME', 'DSOW',
'DSPS', 'DSUP',
'FIDP', 'FINR',

'FIOF', 'MEOG',
'MEPS', 'NPPO',
'NPRO', 'NPSU',
'OACN', 'OCAB',
'OCAI', 'OCNE',
'OCOT', 'OIAR',
'OIHC', 'OIMP',
'OIRM', 'OITP',
'OPSA', 'SDAH',

'SDPB')

57 0.21 False

X_5

(1.0, inf) 38 0.36 True

(-1.0, 1.0] 43 0.34 False

(-inf, -1.0] 55 0.25 True

43

X_6

('15', '32', '38',
'52', '60')

38 0.39 True

('14', '30', '34',
'40', '43', '59')

41 0.33 False

('9',) 46 0.29 True

('31', '46') 41 0.24 False

('16', '22', '25',
'27', '29', '37',

'44', '61')
53 0.18 True

The objective is to obtain a scorecard with only “True” values in the “Significative test” column. To do

so, we will group the different modalities based on the risk rate. Applying this method might change

the Information Value of the variables. And so, might change the final selected variables over

processing different iterations.

In the end after grouping the modalities to obtain “True” in the “Significative test”, we obtained the

following scorecard for the IV:

Variable Modalities Information Value

X_1

(-inf, 3764] 0.06

(3764, 6010] 0.01

(6010, 12462] 0.02

(12462, inf) 0.08

TOTAL 0.17

X_2

High_risk 0.04

Medium_risk 0.00

Low_risk 0.05

TOTAL 0.09

X_4

High_risk 0.02

Medium_risk 0.00

Low_risk 0.06

TOTAL 0.09

X_3
(-inf, 480] 0.02

(480, inf] 0.08

TOTAL 0.10

X_6

High_risk 0.02

Medium_risk 0.00

Low_risk 0.04

TOTAL 0.06

X_7

(6, inf) 0.01

(1, 6] 0.00

(0, 1] 0.00

(-inf, 0] 0.01

TOTAL 0.02

X_8
(-inf, 0.118] 0.00

(0.118, inf) 0.05

TOTAL 0.05

Figure 62: First scorecard

Figure 63: Final scorecard with IV

44

In order to ease the reading, we renamed the modalities (only for categorical variables) based on

their risk level:

• X_2:

o High_risk: 2.0, 33.0, 17.0, 26.0, 6.0, 11.0

o Medium_risk: 12.0, 4.0, 23.0, 1.0, 20.0, 25.0, 3.0, 8.0

o Low_risk: 13.0, 14.0, 15.0, 16.0, 19.0, 21.0, 22.0, 27.0, 30.0, 5.0, 7.0

• X_4:

o High_risk: CMGC, DSAR, DSCS, FICE, FISW, MEUR, NPOL, OILC, SDFW, SDIE

o Medium_risk: CMCM, DSOR, FIPO, OCSH, CMRE, DSLT, FIMT, FIRE, NPOH, NPUA,

OIOT, AGRI, FIHF, MEOM, OIPS

o Low_risk: CMAR, CMAT, CMCA, CMMT, CMNM, CMOG, CMOP, CMSP, DSAA, DSCB,

DSGA, DSGS, DSME, DSOW, DSPS, DSUP, FIDP, FINR, FIOF, MEOG, MEPS, NPPO,

NPRO, NPSU, OACN, OCAB, OCAI, OCNE, OCOT, OIAR, OIHC, OIMP, OIRM, OITP,

OPSA, SDAH, SDPB

• X_6:

o High_risk: 15, 32, 38, 52, 60, 14, 30, 34, 40, 43, 59

o Medium_risk: 9, 31, 46

o Low_risk: 16, 22, 25, 27, 29, 37, 44, 61

o

There are no remaining variables with a Delta IV > 0.02.

We obtained the following final scorecard:

Variable Name Variable Description Modalities and coefficients

X_1
Related to the

applicant income

(-inf, 3764]

(3764, 6010]
(6010,
12462]

(12462,
inf)

39 49 58 70

X_2
Related to the
applicant job

High_risk Medium_risk Low_risk

39 44 53

X_4
Related to the
applicant job

High_risk Medium_risk Low_risk

39 45 55

X_3
Related to the

applicant expenses
(-inf, 480] (480, inf]

39 50

X_6
Related to the

product

High_risk Medium_risk Low_risk

39 44 53

X_7
Credit Bureau
information

(6, inf) (1, 6] (0, 1] (-inf, 0]

39 52 59 65

X_8
Related to the

applicant expenses
(-inf, 0.118] (0.118, inf)

39 51

Figure 64: Final scorecard with coefficients

45

As said before, because we are working on a low volume scenario, we don’t have any test or

validation samples. But we can evaluate the model by using techniques that train multiple times the

model on a part of the data, different each time, and each time evaluate this model on the left-out

data.

One of this evaluation methods is using cross-test (with k-fold test), we cut the total dataset into k

parts, train the model k times on k-1 folds. And each time evaluate it on the left-out fold. The

recommended parameter is k ∈ ⟦3;5⟧. In our case k is equal to 5 folds.

With this method, using five folds, we obtained the following performances results (using quartiles).

Looking at the Gini:

We can expect to have a Gini value on the train between 0.33 and 0.35, with a median at 0.34 (mean

of 0.341). And a Gini value on the test between 0.30 and 0.375, with a median at 0.33 (mean of

0.333).

Figure 65: Cross test explanation

Figure 66: Gini using StratifieKFold

46

Looking at the Log Odds slope:

We can expect to have a Log Odds slope value between 0.846 and 1.116, with a median at 0.972

(mean of 0.974). Being around 1 is very nice.

Looking at the Stability Index:

We can expect to have a Stability Index value between 0.002 and 0.004, with a median at 0.007

(mean of 0.0098). Being the nearest to 0 is nice.

Let’s now look at the risk rate in each of these categories:

Figure 67: Log Odds using StratifiedKFold

Figure 68: Stability Index using StratifiedKFold

47

When looking at the above graph, we can see that the risk rate is decreasing by cuts (there is no

inversion). Just for the intervals (310.0, 315.0] and (315.0, 320.0], the risk rates are very close (0.359

and 0.358).

Here is an overview of the volumes and risk rate of the modalities for the selected variables:

- X_1 : increasing the variable lowers the risk

X_1

Figure 69: Risk rate by score cuts

Figure 70: X_1 analysis

48

- X_2: it’s possible to regroup some modalities

into High, Medium et Low risk categories

- X_4: it’s possible to regroup some modalities

into High, Medium et Low risk categories

- X_6: it’s possible to regroup some modalities

into High, Medium et Low risk categories

- X_7: lowering the value lowers the risk

X_2 X_4

X_6 X_7

Figure 71: X_2 analysis Figure 72: X_4 analysis

Figure 73: X_6 analysis Figure 74: X_7 analysis

49

It’s important to check if the selected variables aren’t correlated (>0.5) by looking at the Cramer V

matrix:

 X_1 X_2 X_4 X_3 X_6 X_7 X_8

X_1 1 0.15 0.11 0.31 0.08 0.08 0.19

X_2 1 0.11 0.16 0.12 0.06 0.13

X_4 1 0.19 0.12 0.05 0.14

X_3 1 0.22 0.11 0.20

X_6

 1 0.07 0.16

X_7

 1 0.08

X_8 1

The highest correlation is observed between the variables “X_1” and “X_3” at 0.31 (< 0.5).

We can affirm that the selected variables aren’t highly correlated, based on the threshold set by the

Scoring Center (0.5).

5. Example

To clarify the way of using this model, here is a quick example on how to use it.

- X_8: increasing the value lowers the risk

- X_3: increasing the value lowers the risk

X_8 X_3

Figure 75: X_8 analysis

Figure 76: X_3 analysis

Figure 77: Cramer V matrix analysis

50

Let’s create a fake applicant named John:

- X_1 = 4 023

- X_2 = High risk

- X_4 = Medium risk

- X_3 = 495

- X_6 = High risk

- X_7 = 5

- X_8 = 0,1

Using the above scorecard, John will obtain the following score:

John Score = 49 + 39 + 45 + 50 + 39 + 52 + 39 = 313

This score puts him in a risky category (with a risk rate of 35.9%). Which is 6 points more than the

average risk rate in the data set.

The entity will have to determine a table to define what action to take regarding John’s application.

6. Conclusion

We were able to build a Logistical Regression model to attribute a score to an application based on

the following granting information of the applicant:

- The gross income

- The employment types

- The sector of employment

- The expense for the transports

- The code of the product

- The number of "credit report" made to Credit Bureau

- The proportion of his/her allocated to the rent

We obtained a good model as we can see on its Gini curve:

Figure 78: John’s score

51

The red line is detached from the blue one. So, it means that our model is discriminating.

Another good metric to evaluate our model is the “max Kolmogorov–Smirnov test”. It compares the

Good Debt and Bad Debt cumulative distributions and returns the maximum difference between

them.

Score Bad Debt – Good Debt

(272.999, 303.0] 10.86%

(303.0, 310.0] 18.63%

(310.0, 315.0] 21.52%

(315.0, 320.0] 24.42%

(320.0, 325.0] 24.24%

(325.0, 330.0] 22.92%

(330.0, 336.0] 20.47%

(336.0, 343.0] 16.24%

(343.0, 354.0] 9.8%

(354.0, 391.0] 0.0%

In our case, we can see that the highest difference is for score bin (315.0, 320.0] with a value of

24.42%.

Although we have some good metrics to evaluate our model, there is a some very important

weakness.

The first one is due to the low volume scenario. We are working without any validation and/or test

set. The consequence is that it’s difficult to evaluate the final model performances.

Figure 79: Final model Gini

Figure 80: Final model Kolmogorov–Smirnov test

52

Then we don’t know what to do for unknown categories. Once we grouped the known modalities,

where should we put the unknown ones? The usual way to deal with this in the Scoring Center is to

attribute the new unknown modality to the riskiest group. But this method lowers the model

efficiency.

Finally, the last one is the time robustness. Because we are working within a very short period (data

collected on less than a year) we don’t know the robustness of the model and stability of the

variables through time. It could be very interesting to obtain an out of time sample to evaluate our

model on an unknown period.

The only way to solve these problems would be to increase the size of the data. But it will be time

consuming to collect more information. And the entity is in the need of a scorecard.

The next step for this project is to being reviewed by the higher instances and other members of the

mission in order to be validated or not.

53

General conclusion

The first part of my apprenticeship, on the categorical encoders, was very interesting. I discovered a

lot of new techniques on how to deal with the categorical variables. Even if, during this project, it

was sometime a bit rough to deal with the apprenticeship rhythm (being at the school with my

friends then working alone on my side at the company for days), I’m happy I developed my research

and autonomous skills.

The second part on the RCS project was probably the one I liked the most. Working on a real business

project with a real business goal was very nice. I also learned a lot on the methodology of a business

case and how to document your work. It was what I expected from this apprenticeship year.

In the end, I really enjoyed doing this apprenticeship at BNP Paribas PF. During this year, I discovered

a lot of new techniques and developed some skills through my works. I applied knowledges I

obtained at the apprenticeship to some school projects or personal projects. And vice versa. Thanks

to the research I did on the categorical encoding techniques, I was able to obtain better results and

gained time on a school project. It was my first experience in a large company.

I’m very grateful toward the other members of the team. I learned a lot from them and hope that my

work will be useful for them.

54

Annexes

 Actualized resume

